The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A356037 Conjecturally, a(n) is the smallest number m such that every natural number is a sum of at most m n-simplex numbers. 0
1, 3, 5, 8, 10, 13, 15, 15, 19, 24 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
n-simplex numbers are {binomial(k,n); k>=n}.
This problem is the simplex number analog of Waring's problem.
a(2) = 3 was proposed by Fermat and proved by Gauss, see A061336.
Pollock conjectures that a(3) = 5. Salzer and Levine prove this for numbers up to 452479659. See A104246 and A000797.
Kim gives a(4)=8, a(5)=10, a(6)=13 and a(7)=15 (not proved).
LINKS
Hyun Kwang Kim, On regular polytope numbers, Proc. Amer. Math. Soc. 131 (2003), p. 65-75.
EXAMPLE
2-simplex numbers are {binomial(k,2); k>=2} = {1,3,6,10,...}, the triangular numbers. 3 is the smallest number m such that every natural number is a sum of at most m triangular numbers. So a(2)=3.
3-simplex numbers are {binomial(k,3); k>=3} = {1,4,10,20,...}, the tetrahedral numbers. 5 is presumed to be the smallest number m such that every natural number is a sum of at most m tetrahedral numbers. So a(3)=5.
CROSSREFS
Minimal number of x-simplex numbers whose sum equals n: A061336 (x=2), A104246 (x=3), A283365 (x=4), A283370 (x=5).
x-simplex numbers: A000217 (x=2), A000292 (x=3), A000332 (x=4), A000389 (x=5), A000579 (x=6), A000580 (x=7), A000581 (x=8), A000582 (x=9).
Sequence in context: A033033 A211704 A275813 * A353070 A080754 A198083
KEYWORD
nonn,hard,more
AUTHOR
Mohammed Yaseen, Jul 24 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 21:33 EDT 2024. Contains 372533 sequences. (Running on oeis4.)