The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355867 Coefficients in the even function A(x) = Sum_{n>=0} a(n)*x^(2*n) such that: 2 = Sum_{n=-oo..+oo} x^n * (x^n + i*sqrt(A(x)))^n, where i^2 = -1. 2
1, 1, -1, -6, -3, 27, 64, -72, -580, -573, 3276, 10778, -4429, -94493, -153086, 463061, 2197569, 604351, -17222574, -40338277, 64029441, 477897865, 433963667, -3248816635, -10525409672, 6577294016, 106318417880, 163863253517, -599970596239, -2714863450622 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
What is the pattern to the signs of the terms?
Related identity: Sum_{n=-oo..+oo} (-x)^n * (x^n + y)^n = 0 for all y.
Related identity: Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + y*x^n)^n = 0 for all y.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^(2*n) satisfies the following sums.
(1) 2 = Sum_{n=-oo..+oo} x^n * (x^n + i*sqrt(A(x)))^n.
(2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + i*sqrt(A(x)))^n.
(3) 1 = Sum_{n=-oo..+oo} x^(2*n) * (x^(2*n) + i*sqrt(A(x)))^(2*n).
(4) 1 = Sum_{n=-oo..+oo} x^(2*n+1) * (x^(2*n+1) + i*sqrt(A(x)))^(2*n+1).
(5) 2 = Sum_{n=-oo..+oo} x^(n*(n-1)) / (1 + i*sqrt(A(x))*x^n)^n.
(6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + i*sqrt(A(x))*x^n)^n.
(7) 1 = Sum_{n=-oo..+oo} x^(2*n*(2*n-1)) / (1 + i*sqrt(A(x))*x^(2*n))^(2*n).
(8) 1 = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + i*sqrt(A(x))*x^(2*n+1))^(2*n+1).
EXAMPLE
G.f.: A(x) = 1 + x^2 - x^4 - 6*x^6 - 3*x^8 + 27*x^10 + 64*x^12 - 72*x^14 - 580*x^16 - 573*x^18 + 3276*x^20 + 10778*x^22 - 4429*x^24 + ...
Let B = sqrt(A(x)) and i = sqrt(-1), then the imaginary part vanishes in the following sums:
(1) 2 = ... + x^(-3)/(x^(-3) + i*B)^3 + x^(-2)/(x^(-2) + i*B)^2 + x^(-1)/(x^(-1) + i*B) + 1 + x*(x + i*B) + x^2*(x^2 + i*B)^2 + x^3*(x^3 + i*B)^3 + ... + x^n*(x^n + i*sqrt(A(x)))^n + ...
(2) 0 = ... - x^(-3)/(x^(-3) + i*B)^3 + x^(-2)/(x^(-2) + i*B)^2 - x^(-1)/(x^(-1) + i*B) + 1 - x*(x + i*B) + x^2*(x^2 + i*B)^2 - x^3*(x^3 + i*B)^3 + ... + (-x)^n*(x^n + i*sqrt(A(x)))^n + ...
(3) 1 = ... + x^(-6)/(x^(-6) + i*B)^6 + x^(-4)/(x^(-4) + i*B)^4 + x^(-2)/(x^(-2) + i*B)^2 + 1 + x^2*(x^2 + i*B)^2 + x^4*(x^4 + i*B)^4 + x^6*(x^6 + i*B)^6 + ... + x^(2*n)*(x^(2*n) + i*sqrt(A(x)))^(2*n) + ...
(4) 1 = ... + x^(-5)/(x^(-5) + i*B)^5 + x^(-3)/(x^(-3) + i*B)^3 + x^(-1)/(x^(-1) + i*B) + x*(x + i*B) + x^3*(x^3 + i*B)^3 + x^5*(x^5 + i*B)^5 + ... + x^(2*n+1)*(x^(2*n+1) + i*sqrt(A(x)))^(2*n+1) + ...
where
B = sqrt(A(x)) = 1 + 2*(x/2)^2 - 10*(x/2)^4 - 172*(x/2)^6 - 90*(x/2)^8 + 12284*(x/2)^10 + 90812*(x/2)^12 - 664088*(x/2)^14 - 14660346*(x/2)^16 - 35699220*(x/2)^18 + 1460864084*(x/2)^20 + ...
The expansion of Sum_{n=-oo..+oo} x^n * (x^n + i*sqrt(A(x)))^n yields
2 = 2 + (2*i^2 + 2)*x^2 + (2*i^4 + 2*i^2)*x^4 + (2*i^6 + 4*i^4 + 4*i^2 + 2)*x^6 + (2*i^8 + 6*i^6 - 2*i^4 - 6*i^2)*x^8 + (2*i^10 + 8*i^8 - 18*i^4 - 12*i^2)*x^10 + (2*i^12 + 10*i^10 + 4*i^8 - 46*i^6 - 14*i^4 + 30*i^2 + 2)*x^12 + (2*i^14 + 12*i^12 + 10*i^10 - 64*i^8 - 76*i^6 + 110*i^4 + 122*i^2)*x^14 + (2*i^16 + 14*i^14 + 18*i^12 - 80*i^10 - 178*i^8 + 210*i^6 + 308*i^4 + 6*i^2)*x^16 + ...
in which all coefficients of x^n evaluate to zero except the constant term.
Specific values.
Let a = A(1/2) = 1.11275889505675972780876...
and b = sqrt(a) = 1.05487387637421362384214...,
then 2 = Sum_{n=-oo..+oo} 1/2^n * (1/2^n + i*b)^n.
The signs of the terms begin:
[+,+,-,-,-,+,+,-,-,-,+,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-, +,+,-,-,-,+,+,-,-,-,+,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-, +,+,-,-,-,+,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-, +,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-, +,+,-,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-,+,+,-,-,-, +,+,+,-,-,+,+,+,-,-,+,+,+,-,-,+,+,+,-,-,-,+,+,-,-,-,+,+,-,-,-, +,+,+,-,-,+,+,+,-,-,+,+,+,-,-, ...].
PROG
(PARI) {a(n) = my(A=[1, 0], B); for(i=1, n, A=concat(A, [0, 0]); B = sqrt(Ser(A));
A[#A-1] = polcoeff( sum(m=-#A, #A, x^m*(x^m + I*B)^m ), #A)/2); A[2*n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1, 0], B); for(i=1, n, A=concat(A, [0, 0]); B = sqrt(Ser(A));
A[#A-1] = polcoeff( sum(m=-#A, #A, x^(2*m*(2*m-1)) / (1 + I*B*x^(2*m))^(2*m) ), #A)); A[2*n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A355868.
Sequence in context: A294032 A088697 A039631 * A287510 A282418 A287608
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 09 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 14:02 EDT 2024. Contains 373023 sequences. (Running on oeis4.)