OEIS A355448

RICHARD J. MATHAR

Abstract

Defining sequence [1, A355448] via the number of of divisors of n^{2} and using modulo arithmetics of on the prime factors for the multiplicative $\tau\left(n^{2}\right)$ leads to the Dirichlet Convolution of two elementary characteristics function. This manuscript aims to proof the associated conjectured formula of mid-2022.

1. A355448 BY DEFINITION

The terms of sequence A355448 are defined via

$$
a(n)= \begin{cases}1, & \left(6, \tau\left(n^{2}\right)\right)=1 \tag{1}\\ 0, & \left(6, \tau\left(n^{2}\right)\right)>1\end{cases}
$$

where (.,.) is the greatest common divisor. So this is a function which characterizes whether the number of divisors of n^{2} is has a prime factor 2 or 3 on one hand or only prime factors $5,7,11,13, \ldots$ on the other. With the simple formula $a\left(p^{e}\right)=2 e+1$ for the multiplicative sequence

$$
\begin{equation*}
A 048691(n)=\tau\left(n^{2}\right) \tag{2}
\end{equation*}
$$

and the canonical prime factorization of n,

$$
\begin{equation*}
n \equiv p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \cdots \tag{3}
\end{equation*}
$$

we obviously have

$$
\begin{equation*}
\tau\left(n^{2}\right)=\left(2 e_{1}+1\right)\left(2 e_{2}+1\right)\left(2 e_{3}+1\right) \cdots \tag{4}
\end{equation*}
$$

So $a(n)=1$ if that product $\prod_{i}\left(2 e_{1}+1\right)$ has no prime factors 2 or 3 , zero otherwise. Since all $2 e_{i}+1$ are odd we may rephrase this:
$a(n)=1$ if that product $\prod_{i}\left(2 e_{1}+1\right)$ has no prime factors 3 .
$a(n)=1$ if all $2 e_{1}+1 \in\{1,2\}(\bmod 3)$.
$a(n)=1$ if all $2 e_{1} \in\{0,1\}(\bmod 3)$.
Observing that the sequence $2 n(\bmod 3)$ is the 3 -periodic $0,2,1,0,2,1 \ldots$ for $n=0,1,2,3 \ldots$ as in A080425, this may be rephrased

$$
a(n)= \begin{cases}1, & e_{i} \in\{0,2\} \quad(\bmod 3) \forall i \tag{5}\\ 0, & \exists e_{i} \equiv 1 \quad(\bmod 3)\end{cases}
$$

which means $a(n)=1$ if all e_{i} are in A007494. $a(n)=0$ if any e_{i} is in A016777.

[^0]
2. Convolution formula

The characteristic function A010057 of the cubes defines a sequence

$$
\begin{equation*}
A 010057(n)=c(n) \tag{6}
\end{equation*}
$$

where $c(n)=1$ if all prime exponents are multiples of 3 , which means $3 \mid e_{i}$ for all i.

The characteristic function A227291 of the squares of squarefree numbers defines a sequence

$$
\begin{equation*}
A 227291(n)=s(n) \tag{7}
\end{equation*}
$$

where $s(n)=1$ if all prime exponents are 2 , zero otherwise.
The divisors d of n have the canonical prime factorization $p_{1}^{e_{1} \downarrow} p_{2}^{e_{2} \downarrow} p_{3}^{e_{3} \downarrow} \ldots$ where \downarrow indicates that e_{i} has been replaced by a non-negative number not larger than e_{i}.

A subset of these divisors $d \mid n$ will match the criterion $s(d)=1$ and can be assembled by considering any sub-product of the p_{i} with exponents $e_{i} \geq 2$. The divisors will have factors p_{i}^{2} at these places; the complementary divisors n / d will contain the factors $p_{i}^{e_{i}-2}$ at these places. The crucial observation is that this reduction to $e_{i}-2$ in the exponents of the complementary divisors pushes these affected p_{i} from the class $\{0,2\}(\bmod 3)$ in (5) to the class $\{1,0\}(\bmod 3)$ and from the class $\{1\}$ $(\bmod 3)$ in (5) to the class $\{2\}(\bmod 3)$.

The sub-cases are

- $a(n)=0$ because at least one exponent is $1(\bmod 3)$. The complementary divisors n / d of divisors in the set $s(d)=1$ will have $c(n / d)=0$, because at least one of the reduced exponents will be in $2(\bmod 3)$ or $1(\bmod 3)$ and n / d cannot be a cube. In detail:
- If the divisor d affects at least one of the exponents in $1(\bmod 3)$, this is pushed to $2(\bmod 3)$ in n / d.
- If the divisor d affects none of the exponents $1(\bmod 3)$, this stays in n / d.
Splitting the divisors into the sets of divisors in A062503, $s(d)=1$, and in the complementary A000037, $s(d)=0$, yields
(8) $\quad \sum_{d \mid n} c(d / n) s(n)=\sum_{d \in A 062503 \mid n} c(d / n) s(d)+\sum_{d \notin A 062503 \mid n} c(d / n) s(d)$

$$
=\sum_{d \in A 062503 \mid n} c(d / n)=0 .
$$

So we have shown that the Dirichlet Convolution of A010057 by A227291 gives the correct $a(n)$ for the cases $a(n)=0$.

- $a(n)=1$ because all exponents are $\{0,2\}(\bmod 3)$. Selecting divisors d where $s(d)=1$ will push the affected exponents in the complementary divisors n / d from $0(\bmod 3)$ to $1(\bmod 3)($ non-cubes $)$ and from $2(\bmod 3)$ to $0(\bmod 3)$ (cubes). The non-affected exponents stay in the class $\{0,2\}$
$(\bmod 3)$.
(9) $\quad \sum_{d \mid n} c(d / n) s(n)=\sum_{d \in A 062503 \mid n} c(d / n) s(d)+\sum_{d \notin A 062503 \mid n} c(d / n) s(d)$

$$
=\sum_{d \in A 062503 \mid n} c(d / n)
$$

To obtain non-zero $c(d / n)$ all affected and non-affected exponents need to end up in $0(\bmod 3)$. As we are decreasing with \downarrow either by zero (nonaffected exponents) or by 2 (affected), and as we are starting from exponents $\{0,2\}(\bmod 3)$ (because $a(n)=1)$, the divisors d must collect all exponents in the set $2(\bmod 3)$, because otherwise these would stay in $2(\bmod 3)$ and yield non-cubes d / n. So to obtain non-zero $c(d / n)$ there is exactly one contributing d which is the product of all $p_{i}^{e_{i}}$ over $e_{i} \equiv 2(\bmod 3)$. Since this d is unique and leads to a single term (equal to 1) in (9), we have shown that the Dirichlet Convolution of A010057 by A227291 gives the correct $a(n)$ for the cases $a(n)=1$.
Because the Dirichlet Generating Functions of A010057, $\zeta(3 s)$ and A227291, $\zeta(2 s) / \zeta(4 s)$ are known, the Dirichlet Generating Function for $a(n)$ is just their product.

References

1. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2023), https://oeis.org/. MR 3822822
URL: http://www.mpia.de/~mathar
Hoeschstr. 7, 52372 Kreuzau, Germany

[^0]: Date: February 7, 2023.
 2020 Mathematics Subject Classification. Primary 11A05, 11A07.

