The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A355361 G.f. A(x) satisfies: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. 11

%I #14 Jan 19 2024 08:56:43

%S 1,1,5,26,136,746,4261,25173,152596,943804,5931561,37768700,243124702,

%T 1579577423,10344340396,68212177180,452531832109,3018280278965,

%U 20227324602249,136135295125566,919757424512780,6235752585125348,42411283395662960,289289349007740037

%N G.f. A(x) satisfies: x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

%C Equals the row sums of triangle A355360: a(n) = Sum_{k=0..n} A355360(n,k) for n >= 0.

%H Paul D. Hanna, <a href="/A355361/b355361.txt">Table of n, a(n) for n = 0..400</a>

%F G.f. A(x) satisfies:

%F (1) x*A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.

%F (2) -x*A(x)^2 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.

%F (3) x*A(x)*P(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), where P(x) = Product_{n>=1} 1/(1 - x^n) is the partition function (A000041), due to the Jacobi triple product identity.

%F a(n) ~ c * d^n / n^(3/2), where d = 7.27539777267340429262199058476266... and c = 0.504162727798216251681995853318... - _Vaclav Kotesovec_, Jul 20 2022

%F A(1/d) = 1.78721033673795569... where 1/d = 0.1374495293928845... and d is the value given above by _Vaclav Kotesovec_. - _Paul D. Hanna_, Jul 30 2022

%F Formula (3) can be rewritten as the functional equation QPochhammer(y, x)/(1 - y) * QPochhammer(1/(x*y), x)/(1 - 1/(x*y)) = x*y / QPochhammer(x). - _Vaclav Kotesovec_, Jan 19 2024

%e G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 136*x^4 + 746*x^5 + 4261*x^6 + 25173*x^7 + 152596*x^8 + 943804*x^9 + 5931561*x^10 + ...

%e where

%e x*A(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ...

%t (* Calculation of constants {d,c}: *) {1/r, s*Sqrt[((-1 + s)*(-1 + r*s) * Log[r]*((-1 + s)*(-1 + r*s) * QPolyGamma[0, 1, r] - r*(-1 + s)*(-1 + r*s) * Log[r] * Derivative[0, 1][QPochhammer][r, r] / QPochhammer[r] + r*Log[r]*QPochhammer[r] * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][1/(r*s), r] + (-1 + r*s)*((1 - s) * QPolyGamma[0, Log[s]/Log[r], r] - Log[r]*(s + r*(-1 + s) * Derivative[0, 1][QPochhammer][s, r] / QPochhammer[s, r])))) / (2* Pi*(-s*(1 + r - 4*r*s + r*(1 + r)*s^2) * Log[r]^2 + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)^2 * (-1 + r*s)^2 * QPolyGamma[1, -Log[r*s]/Log[r], r]))]} /. FindRoot[{QPochhammer[r] * QPochhammer[1/(r*s), r] * QPochhammer[s, r] / ((-1 + s)*(-1 + r*s)) == -1, 1/(-1 + s) + 1/(-1 + r*s) + (QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, Log[1/(r*s)]/Log[r], r])/Log[r] == -2}, {r, 1/7}, {s, 2}, WorkingPrecision -> 70] (* _Vaclav Kotesovec_, Jan 19 2024 *)

%o (PARI) {a(n) = my(A=[1,1],t); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));

%o A[#A] = polcoeff( x*Ser(A) - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}

%o for(n=0,30,print1(a(n),", "))

%Y Cf. A355360, A355362, A355363, A355364, A355365.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Jul 19 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 14:59 EDT 2024. Contains 373202 sequences. (Running on oeis4.)