The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354766 1/4 of the total number of integral quadruples with sum = n and sum of squares = n^2. 5
1, 2, 4, 2, 7, 8, 7, 2, 13, 14, 13, 8, 13, 14, 28, 2, 19, 26, 19, 14, 28, 26, 25, 8, 37, 26, 40, 14, 31, 56, 31, 2, 52, 38, 49, 26, 37, 38, 52, 14, 43, 56, 43, 26, 91, 50, 49, 8, 49, 74, 76, 26, 55, 80, 91, 14, 76, 62, 61, 56, 61, 62, 91, 2, 91, 104, 67, 38, 100, 98, 73, 26, 73, 74, 148, 38, 91, 104, 79, 14, 121, 86, 85, 56 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If instead we count only primitive quadruples (meaning quadruples (h,i,j,k) with gcd(h,i,j,k) = 1) we get A278085(n).
Conjectures from Colin Mallows, Jun 12 2022: (Start)
Given a natural number n, a "quad" for n is a quadruple q = (h,i,j,k) of integers with sum(q) = h+i+j+k = n and sum(q^2) = h^2+i^2+j^2+k^2 = n^2.
A quad q is "primitive" if gcd(h,i,j,k) = 1. Define pq(n) = A278085(n) to be the number of distinct primitive quads for n, and tq(n) (the present sequence) to be the total number of quads for n.
Conjecture 1: (Based on the data for n <= 5000) pq/4 and tq/4 are multiplicative sequences.
Conjecture 2: When n = p^k, p prime and k >= 1:
if p = 2, k = 1 then pq(q)/4 = 1 and tq(n)/4 = 2;
if p = 2, k >= 2 then pq(q)/4 = 0 and tq(n)/4 = 2;
if p = 3, k >= 1 then pq(q)/4 = n and tq(n)/4 = (3*n-1)/2;
if p == 5 (mod 6), k >= 1 then pq(q)/4 = (p+1)*n/p and tq(n)/4 = n + 2*(n-1)/(p-1);
if p == 1 (mod 6), k >= 1 then pq(q)/4 = (p-1)*n/p and tq(n)/4 = n.
(End)
Conjecture: the numbers n for which a(n) = n have a positive asymptotic density.
LINKS
EXAMPLE
Solutions for n = 1: (1,0,0,0) and all permutations thereof.
n=2: (2,0,0,0) and (1,1,1,-1).
n=3: (3,0,0,0) and (2,2,-1,0).
n=4: (4,0,0,0) and (2,2,2,-2). Eight solutions, so a(4) = 8/4 = 2. None are primitive, so A278085(4) = 0.
n=5: (5,0,0,0) and (4,2,-2,1). 4+24 solutions, so a(5) = 28/4 = 7. 24 are primitive, so A278085(5) = 24/4 = 6.
MAPLE
f:= proc(n) local d; add(g3(n-d, n^2 - d^2), d=-n .. n)/4 end proc:
g3:= proc(x, y) option remember; local m, c;
if x^2 > 3*y then return 0 fi;
m:= floor(sqrt(y));
add(g2(x-c, y - c^2), c=- m.. m)
end proc:
g2:= proc(x, y) option remember;
local v;
v:= 2*y - x^2;
if not issqr(v) then 0
elif v = 0 then 1
else 2
fi
end proc:
map(f, [$1..100]); # Robert Israel, Feb 16 2023
MATHEMATICA
f[n_] := Sum[g3[n - d, n^2 - d^2], {d, -n, n}]/4 ;
g3[x_, y_] := g3[x, y] = Module[{m}, If[x^2 > 3*y, 0, m = Floor[Sqrt[y]]; Sum[g2[x - c, y - c^2], {c, -m, m}]]];
g2[x_, y_] := g2[x, y] = Module[{v}, v = 2*y - x^2; Which[!IntegerQ@Sqrt[v], 0, v == 0, 1, True, 2]];
f /@ Range[100] (* Jean-François Alcover, Mar 09 2023, after Robert Israel *)
CROSSREFS
See also A353589 (counts nondecreasing nonnegative (h,i,j,k) such that (+-h, +-i, +-j, +-k) is a solution).
Sequence in context: A207631 A207612 A207620 * A207622 A335573 A073017
KEYWORD
nonn,look
AUTHOR
N. J. A. Sloane, Jun 19 2022, based on an email from Colin Mallows, Jun 12 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 12:09 EDT 2024. Contains 372736 sequences. (Running on oeis4.)