The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352093 G.f. A(x,y) = lim_{N->infinity} (1 - P(N,x,y))/(2*x)^N, where P(0,x,y) = -y, and P(n+1,x,y) = sqrt(1 - 4*x + 4*x*P(n,x,y)) for n = 0..N-1. 1
1, 1, 1, 2, 1, 4, 10, 8, 2, 13, 40, 46, 24, 5, 48, 174, 256, 196, 80, 14, 162, 696, 1286, 1328, 814, 280, 42, 600, 2932, 6400, 8188, 6648, 3404, 1008, 132, 2109, 11824, 30348, 46864, 47582, 32336, 14252, 3696, 429, 7760, 48630, 142352, 256264, 311696, 263844, 154224, 59592, 13728, 1430 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
Column 0 = A351509.
Column 1 = A351511.
Diagonal = A000108, the Catalan numbers.
Row sums = 2^(n+1) * A006365(n), which is related to binary tree partitions.
G.f. A(x,y) has the following special values.
(1) A(x=1/8, y) = Pi^2/8 + Sum_{n>=1} y^n * 2^n * gamma(n/2)^2 / (4*n!).
(2) A(x=1/8, y) = Pi^2/8 + (Pi/2)*B(y) + C(y), where
B(y) = Sum_{n>=0} [Product_{k=0..n-1} 2*k+1]^2 * y^(2*n+1) / (2*n+1)!,
C(y) = Sum_{n>=1} [Product_{k=1..n-1} 2*k]^2 * y^(2*n) / (2*n)!.
(3) A(x=1/8, y=1/2) = Pi^2*2/9 = Pi^2/8 + Sum_{n>=1} gamma(n/2)^2 / (4*n!).
(4) A(x=1/8, y=-1/2) = Pi^2/18 = Pi^2/8 + Sum_{n>=1} (-1)^n * gamma(n/2)^2 / (4*n!).
EXAMPLE
This triangle of coefficients of x^n*y^k in A(x,y) begins:
1, 1;
1, 2, 1;
4, 10, 8, 2;
13, 40, 46, 24, 5;
48, 174, 256, 196, 80, 14;
162, 696, 1286, 1328, 814, 280, 42;
600, 2932, 6400, 8188, 6648, 3404, 1008, 132;
2109, 11824, 30348, 46864, 47582, 32336, 14252, 3696, 429;
7760, 48630, 142352, 256264, 311696, 263844, 154224, 59592, 13728, 1430;
...
The generating function begins
A(x,y) = (y + 1) + (y^2 + 2*y + 1)*x + (2*y^3 + 8*y^2 + 10*y + 4)*x^2 + (5*y^4 + 24*y^3 + 46*y^2 + 40*y + 13)*x^3 + (14*y^5 + 80*y^4 + 196*y^3 + 256*y^2 + 174*y + 48)*x^4 + (42*y^6 + 280*y^5 + 814*y^4 + 1328*y^3 + 1286*y^2 + 696*y + 162)*x^5 + (132*y^7 + 1008*y^6 + 3404*y^5 + 6648*y^4 + 8188*y^3 + 6400*y^2 + 2932*y + 600)*x^6 + (429*y^8 + 3696*y^7 + 14252*y^6 + 32336*y^5 + 47582*y^4 + 46864*y^3 + 30348*y^2 + 11824*y + 2109)*x^7 + (1430*y^9 + 13728*y^8 + 59592*y^7 + 154224*y^6 + 263844*y^5 + 311696*y^4 + 256264*y^3 + 142352*y^2 + 48630*y + 7760)*x^8 + (4862*y^10 + 51480*y^9 + 248622*y^8 + 723552*y^7 + 1411452*y^6 + 1939152*y^5 + 1912716*y^4 + 1347040*y^3 + 652486*y^2 + 197080*y + 28166)*x^9 + ...
Specific values.
A(x, y=-1) = 0, for all x.
A(x=1/8, y=1/2) = Pi^2*2/9.
A(x=1/8, y=-1/2) = Pi^2/18.
At x = 1/8, the sum along column n is given by
_ Sum_{m>=0} T(m,n)/8^m = 2^n * gamma(n/2)^2 / (4*n!).
Explicitly, at x = 1/8, the sums along columns begin:
Sum_{n>=0} T(n,0)/8^n = Pi^2/8 = 1 + 1/8 + 4/8^2 + 13/8^3 + 48/8^4 + ...;
Sum_{n>=0} T(n,1)/8^n = (Pi/2) = 1 + 2/8 + 10/8^2 + 40/8^3 + 174/8^4 + ...;
Sum_{n>=0} T(n,2)/8^n = 1/2 = 1/8 + 8/8^2 + 46/8^3 + 256/8^4 + 1286/8^5 + ...;
Sum_{n>=0} T(n,3)/8^n = (Pi/2)/3! = 2/8^2 + 24/8^3 + 196/8^4 + 1328/8^5 + ...;
Sum_{n>=0} T(n,4)/8^n = 4/4! = 5/8^3 + 80/8^4 + 814/8^5 + 6648/8^6 + ...;
Sum_{n>=0} T(n,5)/8^n = (Pi/2)*9/5! = 14/8^4 + 280/8^5 + 3404/8^6 + ...;
Sum_{n>=0} T(n,6)/8^n = 64/6! = 42/8^5 + 1008/8^6 + 14252/8^7 + ...;
...
Notice that A(x=1/8, y=-1) = 0 is equivalent to
Pi^2 = Sum_{n>=1} (-2)^(n+1) * gamma(n/2)^2 / n!.
PROG
(PARI) /* Prints N Rows of this triangle: */
N = 20;
{T(n, k) = my(P = -y + x*O(x^(2*N+1)));
for(i=1, N+1, P = sqrt(1 - 4*x + 4*x*P +x*O(x^(2*N+1))); );
Axy = (1 - P)/2^(N+1)/x^(N+1); polcoeff(polcoeff(Axy, n, x), k, y)}
for(n=0, N, for(k=0, n+1, print1(T(n, k), ", ")); print(""))
CROSSREFS
Sequence in context: A219002 A156919 A179077 * A038195 A212770 A205855
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Mar 04 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)