Test of the k-tuple conjecture on triples, quadruples and quintuples of twin primes (represented by their average).

Twin primes x such that x is the first and $x+d$ the last of m successive twins.

1. Triples of twin primes with $\mathrm{m}=3$ and $\mathrm{d}=18$ (A350541)

There are two triples $(x, x+h, x+18): h=6$ or $h=12$
Example: $(x, x+6, x+18)$ corresponds to a 6 -tupel of primes:

$$
(p, p+2, p+6, p+8, p+18, p+20) \text { with } p=x-1
$$

From $(p+2 \cdot 0, p+2 \cdot 1, p+2 \cdot 3, p+2 \cdot 4, p+2 \cdot 9, p+2 \cdot 10)$, we keep the 6 -tuple $\overrightarrow{v_{1}}=(0,1,3,4,9,10)$. For any odd prime $q, w\left(q, \overrightarrow{v_{1}}\right)$ is the number of distinct residues of $\overrightarrow{v_{1}}(\bmod q)$. For $q=3$, the residues are $0,1,0,1,0,1$ with $w\left(3, \overrightarrow{v_{1}}\right)=2$. The same way, we find $w\left(5, \overrightarrow{v_{1}}\right)=4, w\left(7, \overrightarrow{v_{1}}\right)=5$ and $w\left(q, \overrightarrow{v_{1}}\right)=6$ for $\mathrm{q}>10$.

For the number $N_{1}(y)$ of prime 6-tuples
$(p, p+2, p+6, p+8, p+18, p+20), p<y$, the conjecture is
$N_{1}(y) \sim C\left(\overrightarrow{v_{1}}\right) \int_{2}^{y} \frac{d t}{\ln ^{6} t}$ with $C\left(\overrightarrow{v_{1}}\right)=2^{5} \prod_{q} \frac{1-\frac{w\left(q, \overrightarrow{v_{1}}\right)}{q}}{\left(1-\frac{1}{q}\right)^{6}}$ over all odd primes q.
The result is $C\left(\overrightarrow{v_{1}}\right)=34.5973 . . \approx 34.6$.
The other triple of twin primes $(x, x+12, x+18)$ with $\overrightarrow{v_{2}}=(0,1,6,7,9,10)$ yields the same result so that, for both types of triples as a whole, the constant is $C=2 C_{1} \approx 69.2$.
Table with $L(6, y)=\int_{2}^{y} \frac{d t}{\ln ^{6} t}$:

y	$N(y)$	$L(6, y)$	$N(y) / L(6, y) \approx C$
$2 \cdot 10^{10}$	10750	157.17	68.39723393
$4 \cdot 10^{10}$	17878	259.31	68.94536828
$6 \cdot 10^{10}$	24098	348.98	69.05229524
$8 \cdot 10^{10}$	29853	431.52	69.18183298
$1 \cdot 10^{11}$	35314	509.25	69.34510228

The lower integration limit is a=2 by convention. A different choice would, asymptotically, not affect the constancy of values in the last column. But as the conjecture is tested for $y<10^{11}$, it may be necessary to adjust the limit:

r	$\int_{2}^{3} \frac{d t}{\ln ^{r} t}$	$\int_{3}^{y} \frac{d t}{\ln ^{r} t}$
6	2.542	506.5
8	3.944	1.169
10	6.430	0.168

For $\mathrm{r}=6$, the first integral is small compared with the second. $\mathrm{a}=2$ or $\mathrm{a}=3$ does not make a great difference. For $\mathrm{r}=8, \mathrm{a}=6.9$ is a good choice and for $\mathrm{r}=10$, even the best choice $a=70$ is not very good, see quintuples.
2. Quadruples of twin primes with $\mathrm{m}=4$ and $\mathrm{d}=30$ (A350542)

There are 6 quadruples ($x, x+6 k_{1}, x+6 k_{2}, x+30$) with $1 \leq k_{1}<k_{2} \leq 4$.
Three of them are excluded for divisibility reasons. Remaining quadruples:

1) $(x, x+6, x+18, x+30)$, 2$)(x, x+12, x+24, x+30), 3)(x, x+12, x+18, x+30)$

Example: $\overrightarrow{v_{1}}=(0,1,3,4,9,10,15,16)$ leads to:
$N_{1}(y) \sim C\left(\overrightarrow{v_{1}}\right) \int_{a}^{y} \frac{d t}{\ln ^{8} t}$ with $C\left(\overrightarrow{v_{1}}\right)=2^{7} \prod_{q} \frac{1-\frac{w\left(q, \overrightarrow{v_{1}}\right)}{q}}{\left(1-\frac{1}{q}\right)^{8}}$ over all odd primes q.
For the three quadruples of twin primes, we find: $C\left(\overrightarrow{v_{1}}\right)=C\left(\overrightarrow{v_{2}}\right)=475.4$, $C\left(\overrightarrow{v_{3}}\right)=297.1$ and $C=C\left(\overrightarrow{v_{1}}\right)+C\left(\overrightarrow{v_{2}}\right)+C\left(\overrightarrow{v_{3}}\right) \approx 1248$.
Table with $L(8, y)=\int_{a}^{y} \frac{d t}{l n^{8} t}$ and $\mathrm{a}=6.9$:

y	$N(y) L(8, y)$		$N(y) / L(8, y) \approx C$
$2 \cdot 10^{10}$	393	0.33022	1190
$4 \cdot 10^{10}$	623	0.50609	1231
$6 \cdot 10^{10}$	805	0.65396	1231
$8 \cdot 10^{10}$	985	0.78642	1253
$1 \cdot 10^{11}$	1134	0.90861	1248

The parameter $a=6.9$ was chosen such that $\frac{N(y)}{L(8, y)}=C$ for $y=10^{11}$. Then the values in the last column are fairly constant.
3. Quintuples of twin primes with $m=5$ and $d=48$ (A350543)

A priori, we have to consider all quintuples of even numbers
$\left(x, x+6 k_{1}, x+6 k_{2}, x+6 k_{3}, x+48\right)$ with $1 \leq k_{1}<k_{2}<k_{3} \leq 7$.
Their number is $\binom{7}{3}=35$. Each quintuple corresponds to a 10-tuple of odd numbers: $\left(x \pm 1, x+6 k_{1} \pm 1, x+6 k_{2} \pm 1, x+6 k_{3} \pm 1, x+48 \pm 1\right)$. The differences between these numbers and $x-1$, divided by 2 , are

$$
\overrightarrow{v_{J}}=\left(0,1,3 k_{1}, 3 k_{1}+1,3 k_{2}, 3 k_{2}+1,3 k_{3}, 3 k_{3}+1,24,25\right), j=1 . .35
$$

with the constant $C\left(\overrightarrow{v_{j}}\right)=2^{9} \Pi_{q} \frac{1-\frac{w\left(q, \vec{v}_{j}\right)}{q}}{\left(1-\frac{1}{q}\right)^{10}}$ over all odd primes q where $w\left(q, \vec{v}_{J}\right)$
is the number of distinct residues of $\overrightarrow{v_{j}}(\bmod q) .27$ constants vanish, eight remain. Summation: $C=\sum_{j=1}^{8} C\left(\vec{v}_{j}\right)=18606 . a=70$ is chosen such that $\frac{N(y)}{L(10, y)} \approx C$ for $y=10^{11}$. This leads to the table:

y	$N(y) L(10, y)$		
	$N(y) / L(10, y)$		
$2 \cdot 10^{10}$	13	0.000709	18333
$4 \cdot 10^{10}$	23	0.001014	22684
$6 \cdot 10^{10}$	24	0.001259	19063
$8 \cdot 10^{10}$	27	0.001473	18335
$1 \cdot 10^{11}$	31	0.001666	18610

The values in the last column differ quite a lot. For a better constancy, y should be much greater than 10^{11}.

The formalism of the conjecture allows us a second test which does not depend on the parameter a: We can evaluate the expected frequencies of the eight different types of quintuples relative to the frequency of all quintuples. The constants $C\left(\overrightarrow{v_{j}}\right)$ only differ by the factor $c_{j}=\prod_{q}\left(q-w\left(q, \overrightarrow{v_{j}}\right)\right)$ over all odd primes $q<25$ (last term of $\overrightarrow{v_{j}}$). Then the expected relative frequency of the corresponding quintuple of twin primes is $f_{j}=\frac{c_{j}}{\sum_{i=1}^{8} c_{i}}$ (last column):

Form of the quintuples: $(x, x+a, x+b, x+c, x+d)$	Relative frequencies	
	observed	expected
$6,18,30,48$	$11 / 31=0.355$	0.237
$6,30,36,48$	$5 / 31=0.161$	0.150
$6,18,36,48$	$3 / 31=0.097$	0.075
$18,30,42,48$	$6 / 31=0.194$	0.237
$12,18,42,48$	$3 / 31=0.097$	0.150
$12,30,42,48$	$2 / 31=0.065$	0.038
$12,18,30,48$	$1 / 31=0.032$	0.075
$18,30,42,48$	0	0.038

The observed and expected frequencies differ quite a lot. The number 31 of observed terms is too small for a better match.

