login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A350156 Inverse Moebius transform of A000056. 0
1, 7, 25, 55, 121, 175, 337, 439, 673, 847, 1321, 1375, 2185, 2359, 3025, 3511, 4897, 4711, 6841, 6655, 8425, 9247, 12145, 10975, 15121, 15295, 18169, 18535, 24361, 21175, 29761, 28087, 33025, 34279, 40777, 37015, 50617, 47887, 54625, 53119, 68881, 58975, 79465, 72655, 81433, 85015 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let f be an arbitrary arithmetic function. Define the sequence a(f; n) by a(f; n) = Sum_{i=1..n, k=1..n} f(n / gcd(gcd(i,k),n)) for n > 0. Then a(f; n) equals inverse Moebius transform of f(n) * A007434(n) for n > 0; if f is multiplicative then a(f; n) is multiplicative; this sequence uses f(n) = n (see formula section).
LINKS
FORMULA
Multiplicative with a(p^e) = p^(3*e) - (p-1) * (p^(3*e) - 1) / (p^3 - 1) for prime p and e >= 0.
Dirichlet g.f.: Sum_{n>0} a(n) / n^s = zeta(s-3) * zeta(s) / zeta(s-1).
a(n) = Sum_{i=1..n, k=1..n} n / gcd(gcd(i,k),n) for n > 0.
Dirichlet convolution with A000010 equals A000578.
Dirichlet convolution of A001158 and A055615.
Sum_{k=1..n} a(k) ~ c * n^4, where c = Pi^4/(360*zeta(3)) = 0.225098... . - Amiram Eldar, Oct 16 2022
MATHEMATICA
f[p_, e_] := p^(3*e) - (p - 1)*(p^(3*e) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Jan 19 2022 *)
CROSSREFS
Sequence in context: A155313 A213390 A071778 * A155250 A155260 A155244
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Jan 19 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 1 21:53 EDT 2024. Contains 372177 sequences. (Running on oeis4.)