The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A349943 Number of ways to write n as a^4 + (b^4 + c^2 + d^2)/9, where a,b,c,d are nonnegative integers with c <= d. 5
1, 3, 5, 4, 3, 4, 3, 1, 1, 6, 9, 6, 2, 4, 7, 3, 3, 7, 9, 7, 7, 5, 4, 2, 3, 10, 11, 8, 2, 10, 10, 1, 5, 9, 15, 14, 6, 5, 5, 1, 4, 9, 12, 8, 2, 11, 7, 1, 4, 11, 21, 8, 6, 9, 8, 3, 3, 7, 9, 9, 4, 11, 9, 2, 3, 13, 14, 7, 7, 10, 10, 4, 3, 10, 18, 16, 3, 10, 7, 1, 4, 10, 15, 12, 11, 12, 11, 3, 3, 16, 29, 17, 5, 6, 14, 10, 3, 10, 18, 15, 14 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 7, 8, 31, 39, 47, 79, 519).
This implies that each nonnegative rational number can be written as x^4 + 9*y^4 + z^2 + w^2 with x,y,z,w rational numbers.
Conjecture 2: Each n = 0,1,2,... can be written as a^4 + (4*b^4 + c^2 + d^2)/81 with a,b,c,d nonnegative integers.
This implies that each nonnegative rational number can be written as x^4 + 4*y^4 + z^2 + w^2 with x,y,z,w rational numbers.
We have verified Conjectures 1 and 2 for n <= 10^5.
It seems that each n = 0,1,2,... can be written as a^4 + (b^4 + c^2 + d^2)/m^2 with a,b,c,d nonnegative integers, provided that m is among the odd numbers 7, 11, 15, 17, 19, 21, ....
See also A349942 for a similar conjecture.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
EXAMPLE
a(7) = 1 with 7 = 1^4 + (1^4 + 2^2 + 7^2)/9.
a(8) = 1 with 8 = 0^4 + (0^4 + 6^2 + 6^2)/9.
a(31) = 1 with 31 = 1^4 + (1^4 + 10^2 + 13^2)/9.
a(39) = 1 with 39 = 1^4 + (3^4 + 6^2 + 15^2)/9.
a(47) = 1 with 47 = 1^4 + (3^4 + 3^2 + 18^2)/9.
a(79) = 1 with 79 = 1^4 + (1^4 + 5^2 + 26^2)/9.
a(519) = 1 with 519 = 1^4 + (3^4 + 15^2 + 66^2)/9.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[9(n-x^4)-y^4-z^2], r=r+1], {x, 0, n^(1/4)}, {y, 0, (9(n-x^4))^(1/4)}, {z, 0, Sqrt[(9(n-x^4)-y^4)/2]}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
CROSSREFS
Sequence in context: A340255 A340256 A354247 * A243296 A081361 A195132
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 05 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 15:19 EDT 2024. Contains 372662 sequences. (Running on oeis4.)