The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A347171 Triangle read by rows where T(n,k) is the sum of Golay-Rudin-Shapiro terms GRS(j) (A020985) for j in the range 0 <= j < 2^n and having binary weight wt(j) = A000120(j) = k. 2
1, 1, 1, 1, 2, -1, 1, 3, -1, 1, 1, 4, 0, 0, -1, 1, 5, 2, -2, 1, 1, 1, 6, 5, -4, 3, -2, -1, 1, 7, 9, -5, 3, -3, 3, 1, 1, 8, 14, -4, 0, 0, 2, -4, -1, 1, 9, 20, 0, -6, 6, -4, 0, 5, 1, 1, 10, 27, 8, -14, 12, -10, 8, -3, -6, -1, 1, 11, 35, 21, -22, 14, -10, 10, -11, 7, 7, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Doche and Mendès France form polynomials P_n(y) = Sum_{j=0..2^n-1} GRS(j) * y^wt(j) and here row n is the coefficients of P_n starting from the constant term, so P_n(y) = Sum_{k=0..n} T(n,k)*y^k. They conjecture that the number of real roots of P_n is A285869(n).
Row sum n is the sum of GRS terms from j = 0 to 2^n-1 inclusive, which Brillhart and Morton (Beispiel 6 page 129) show is A020986(2^n-1) = 2^ceiling(n/2) = A060546(n). The same follows by substituting y=1 in the P_n recurrence or the generating function.
LINKS
John Brillhart and Patrick Morton, Über Summen von Rudin-Shapiroschen Koeffizienten, Illinois Journal of Mathematics, volume 22, issue 1, 1978, pages 126-148.
Christophe Doche and Michel Mendès France, An Exercise on the Average Number of Real Zeros of Random Real Polynomials, Finite and Infinite Combinatorics conference, Budapest, 2001, pages 1-14, see Rudin-Shapiro example page 9.
FORMULA
T(n,k) = T(n-1,k) - T(n-1,k-1) + 2*T(n-2,k-1) for n>=2, and taking T(n,k)=0 if k<0 or k>n.
T(n,k) = (-1)^k * A104967(n,n-k).
Row polynomial P_n(y) = (1-y)*P_{n-1}(y) + 2*y*P_{n-2}(y) for n>=2. [Doche and Mendès France]
G.f.: (1 + 2*x*y)/(1 + x*(y-1) - 2*x^2*y).
Column g.f.: C_k(x) = 1/(1-x) for k=0 and C_k(x) = x^k * (2*x-1)^(k-1) / (1-x)^(k+1) for k>=1.
EXAMPLE
Triangle begins
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
n=0: 1
n=1: 1, 1
n=2: 1, 2, -1
n=3: 1, 3, -1, 1
n=4: 1, 4, 0, 0, -1
n=5: 1, 5, 2, -2, 1, 1
n=6: 1, 6, 5, -4, 3, -2, -1
n=7: 1, 7, 9, -5, 3, -3, 3, 1
For T(5,3), those j in the range 0 <= j < 2^5 with wt(j) = 3 are
j = 7 11 13 14 19 21 22 25 26 28
GRS(j) = +1 -1 -1 +1 -1 +1 -1 -1 -1 +1 total -2 = T(5,3)
PROG
(PARI) my(M=Mod('x, 'x^2-(1-'y)*'x-2*'y)); row(n) = Vecrev(subst(lift(M^n), 'x, 'y+1));
CROSSREFS
Cf. A020985 (GRS), A020986 (GRS partial sums), A000120 (binary weight), A285869.
Columns k=0..3: A000012, A001477, A000096, A275874.
Cf. A165326 (main diagonal), A248157 (second diagonal negated).
Cf. A060546 (row sums), A104969 (row sums squared terms).
Cf. A329301 (antidiagonal sums).
Cf. A104967 (rows reversed, up to signs).
Sequence in context: A196931 A175465 A080209 * A127949 A051340 A167407
KEYWORD
sign,look,tabl
AUTHOR
Kevin Ryde, Aug 21 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 21:47 EDT 2024. Contains 372720 sequences. (Running on oeis4.)