login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346918 a(n) is 1 plus the number of iterations of the map prime(n)# + k -> prime(n)# + lpf(prime(n)# + k) required to reach a prime, starting at k=1, where prime(n)# is the n-th primorial and lpf() is the least prime factor, or 0 if no prime is ever reached. 0
1, 1, 1, 1, 1, 2, 2, 9, 9, 2, 1, 5, 0, 0, 5, 2, 8, 4, 11, 0, 0, 5, 4, 11, 2, 11, 19, 3, 11, 3, 20, 7, 6, 6, 7, 3, 4, 16, 20, 4, 4, 4, 14, 17, 0, 26, 4, 2, 17 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
The algorithmic process goes on like this.
Given a primorial prime(n)#.
1) Add 1 to this primorial.
2) If this number is prime, we are done.
3) If not, we look at the prime factors of the number prime(n)# + 1.
4) Now we add the smallest prime factor p1 of prime(n)# + 1 to prime(n)#.
5) If prime(n)# + p1 is prime, then we are done.
6) If not we add the smallest prime factor p2 of prime(n)# + p1 to prime(n)#.
7) If prime(n)# + p2 is prime, then we are done. If not we repeat this process until we find a prime.
8) In the case that we will never find a prime through this proces, we set the value to 0.
There are numbers n such that a(n)=0. Some known values where this happens are n = 13, 14, 20, 21, 45.
LINKS
FORMULA
Open question: Are there infinitely many n such that a(n)=0?
EXAMPLE
The 6th primorial is 2*3*5*7*11*13. Adding 1 gives us prime(6)# + 1 = 59*509, prime(6)# + 59 is prime. So a(6)=2.
a(14)=0 because the least prime factors that occur in the process form an infinite loop:
prime(14)# + 1 = 167 * 78339888213593
prime(14)# + 167 = 89 * 487 * 301842542779
prime(14)# + 89 = 1049537 * 12465269287
prime(14)# + 1049537 = 53 * 246844553447539
prime(14)# + 53 = 12911 * 1013303487853
prime(14)# + 12911 = 3393197 * 3855585553
prime(14)# + 3393197 = 53 * 27031 * 9131906089
...
MATHEMATICA
a[n_] := Module[{primorial = Product[Prime[i], {i, 1, n}], ps = {}, sum, p, count = 1}, sum = primorial + 1; While[! PrimeQ[sum], p = FactorInteger[sum][[1, 1]]; If[MemberQ[ps, p], count = 0; Break[]]; AppendTo[ps, p]; sum = primorial + p; count++]; count]; Array[a, 30] (* Amiram Eldar, Aug 20 2021 *)
PROG
(PARI)
primorial=1 ; for(n=1, 35, primorial=primorial*prime(n) ; iterations=1 ; addtoprimorial=1 ; addtoprimorialvector=[]; done=0 ; while(!done, if(isprime(primorial + addtoprimorial) , print1(iterations, ", ") ; done=1 , iterations++ ; addtoprimorial=factor(primorial + addtoprimorial)[1, 1] ; if(vecsearch(addtoprimorialvector, addtoprimorial), print1(0, ", "); done=1) ; addtoprimorialvector=vecsort(concat(addtoprimorialvector, addtoprimorial)) )))
CROSSREFS
Sequence in context: A021439 A198423 A229116 * A203904 A104681 A056856
KEYWORD
nonn,more,hard
AUTHOR
Kim Hollesen, Aug 07 2021
EXTENSIONS
a(13)-a(49) from Jinyuan Wang, Aug 20 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 4 09:03 EDT 2024. Contains 372230 sequences. (Running on oeis4.)