Notes on A341602 and A341603

Peter Bala, Nov 25 2022

Let F(n) = A000045(n) denote the *n*-th Fibonacci number. The purpose of this note is to show that A) the sequence $\{F(2^{2n})\}$ converges in the ring of 2-adic integers \mathbb{Z}_2 to A341603, the expansion of the 2-adic integer sqrt(-3/5) that is $\equiv 3 \pmod{4}$ and B) the sequence $\{F(2^{2n+1})\}$ converges in \mathbb{Z}_2 to A341602, the expansion of the 2-adic integer sqrt(-3/5) that is $\equiv 1 \pmod{4}$.

A) In \mathbb{Z}_2 , $\lim_{n \to \infty} F(2^{2n}) = A341603$.

In Proposition 2 below, we will establish the following congruence property for the Fibonacci numbers:

$$F(2^{2n+2}) \equiv F(2^{2n}) \pmod{2^{2n+1}}, \ n \ge 0.$$
 (1)

Assuming this for the moment, it follows that the sequence $\{F(2^{2n})\}$ is a Cauchy sequence in \mathbb{Z}_2 , which therefore converges to some 2-adic integer, call it α . We aim to prove that $5\alpha^2 + 3 = 0$ with $\alpha \equiv 3 \pmod{4}$.

Now by Proposition 1, equation (4) below, $F(2^{2n}) \equiv 3 \pmod{4}$ for $n \ge 1$, and hence in the limit we also have $\alpha \equiv 3 \pmod{4}$.

For notational convenience, let $A(n) = F(2^{2n})$. The recurrence equation

$$A(n+1)^{2} = A(n)^{2} \left(5A(n)^{2} + 2 \right)^{2} \left(5A(n)^{2} + 4 \right)$$
(2)

holds with the initial condition A(1) = 3.

Proof. Let $u(n) = F(2^n)$. The recurrence $u(n)^2 = u(n-1)^2 (5u(n-1)^2 + 4)$ may be verified using the Binet formula for the Fibonacci numbers: $F(n) = \frac{1}{\sqrt{5}} (\phi^n - (-1/\phi)^n)$, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio. Then it is straightforward to check that $u(2n) = F(2^{2n})$ satisfies (2). \Box

Taking the 2-adic limit of (2) as $n \to \infty$ gives $\alpha^2 = \alpha^2 (5\alpha^2 + 2)^2 (5\alpha^2 + 4)$, so that α is a root of the polynomial equation $5\alpha^2 (5\alpha^2 + 3) (5\alpha^4 + 5\alpha^2 + 1) = 0$. Since $\alpha \equiv 3 \pmod{4}$, we find that $\alpha^2 \equiv 1 \pmod{4}$ and $5\alpha^4 + 5\alpha^2 + 1 \equiv 3 \pmod{4}$, so it must be the case that $5\alpha^2 + 3 = 0$ in \mathbb{Z}_2 (a ring without zero divisors). Therefore α is the 2-adic integer sqrt(-3/5) with $\alpha \equiv 3 \pmod{4}$. Thus $\alpha = A341603$. **B)** In \mathbb{Z}_2 , lim $\{n \to \infty\}$ $F(2^{2n-1}) = A341602$.

In Proposition 3 below, we establish the following congruence property for the Fibonacci numbers:

$$F(2^{2n+1}) \equiv F(2^{2n-1}) \pmod{2^{2n}} \text{ for } n \ge 1$$

It follows that the sequence $\{F(2^{2n-1})\}$ is a Cauchy sequence in \mathbb{Z}_2 , which therefore converges to some 2-adic integer, call it β . From Proposition 4 below, we have

$$\lim_{n \to \infty} \left(\mathbf{F} \left(2^{2n-2} \right) + F \left(2^{2n-1} \right) \right) = \alpha + \beta = 0.$$

Thus $\beta = -\alpha$ is the other root in \mathbb{Z}_2 of $5x^2 + 3 = 0$ and $\beta \equiv 1 \pmod{4}$. Therefore, $\beta = \lim_{n \to \infty} \{n \to \infty\} \operatorname{F}(2^{2n-1}) = A341602$. \Box

Remark. Just as in (2), one can show that $B(n) := F(2^{2n-1})$ satisfies the recurrence equation

$$B(n+1)^{2} = B(n)^{2} \left(5B(n)^{2} + 2\right)^{2} \left(5B(n)^{2} + 4\right), \qquad (3)$$

the same as for A(n), but with the initial condition B(1) = 1.

It remains to prove the four Propositions concerning Fibonacci numbers used in the above proofs.

Proposition 1.

$$F(2^{2n}) \equiv 3 \pmod{4} \quad \text{for } n \ge 1 \tag{4}$$

$$F(2^{2n+1}) \equiv 1 \pmod{4} \text{ for } n \ge 0.$$
 (5)

Proof. Recall the Binet formulas for the Fibonacci numbers and Lucas numbers L(n) = A000032(n):

$$F(n) = \frac{1}{\sqrt{5}}(\phi^n - (-1/\phi)^n)$$
 and $L(n) = \phi^n + (-1/\phi)^n$,

where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio. A consequence of Binet's formula for the Lucas numbers is the recurrence equation

$$L(2^n) = L(2^{n-1})^2 - 2.$$
 (6)

An induction argument then shows that

$$\mathcal{L}(2^n) \equiv 3 \pmod{4} \quad \text{for } n \ge 1. \tag{7}$$

A well-known identity connecting the Fibonacci and Lucas numbers, which follows immediately from the Binet formulas, is

$$\mathbf{F}(2n) = \mathbf{F}(n)\mathbf{L}(n).$$

Hence

$$F(2^{n}) = F(2^{n-1})L(2^{n-1}).$$
(8)

Using (7) and (8), a straightforward induction argument with base cases F(2) = 1 and F(4) = 3 completes the proof of (4) and (5). \Box

Proposition 2. The congruence

$$\mathbf{F}\left(2^{2n+2}\right) \equiv \mathbf{F}\left(2^{2n}\right) \pmod{2^{2n+1}}$$

holds for $n \geq 0$.

Proof. The case n = 0 is easily checked. Assume now that $n \ge 1$. The Lucas numbers L(n) are known to satisfy the Gauss congruences

$$\mathcal{L}(mp^r) \equiv \mathcal{L}(mp^{r-1}) \pmod{p^r} \tag{9}$$

for all primes p and all positive integers m and r.

Using the Binet formulas it is easy to show that the Fibonacci and Lucas numbers are related by

$$5F(k)^2 + 2(-1)^k = L(2k).$$

Hence

5F
$$(2^{2n})^2 + 2 = L(2^{2n+1})$$
 (10)

and

5F
$$(2^{2n+2})^2 + 2 = L(2^{2n+3}).$$
 (11)

Subtracting (10) from (11) gives

$$5F(2^{2n+2})^{2} - 5F(2^{2n})^{2} = L(2^{2n+3}) - L(2^{2n+1})$$

= $(L(2^{2n+3}) - L(2^{2n+2})) + (L(2^{2n+2}) - L(2^{2n+1}))$
= $0 \pmod{2^{2n+2}}$

by (9). It follows that

$$\left(F\left(2^{2n+2}\right) - F\left(2^{2n}\right)\right) \left(F\left(2^{2n+2}\right) + F\left(2^{2n}\right)\right) \equiv 0 \pmod{2^{2n+2}}.$$
 (12)

Now by Proposition 1, equation (4), $F(2^{2n+2}) + F(2^{2n})$ has the form 2(2N+3) for $n \ge 1$. Hence from (12) we conclude that

$$\mathbf{F}\left(2^{2n+2}\right) - \mathbf{F}\left(2^{2n}\right) \equiv 0 \pmod{2^{2n+1}}$$

for all $n \ge 0$. \Box

Proposition 3. The congruence

$$\mathbf{F}\left(2^{2n+1}\right) \equiv \mathbf{F}\left(2^{2n-1}\right) \pmod{2^{2n}}$$

holds for $n \geq 1$.

Sketch proof. Following a similar argument to that used in Proposition 2, we arrive at the congruence

$$\left(F\left(2^{2n+1}\right) - F\left(2^{2n-1}\right)\right) \left(F\left(2^{2n+1}\right) + F\left(2^{2n-1}\right)\right) \equiv 0 \pmod{2^{2n+1}}.$$
 (13)

By (5), $F(2^{2n+1}) \equiv 1 \pmod{4}$. Thus the second factor $F(2^{2n+1}) + F(2^{2n-1})$ on the left side of (13) is $\equiv 2 \pmod{4}$, that is, $F(2^{2n+1}) + F(2^{2n})$ is twice an odd number. It now follows from (13) that

$$F(2^{2n+1}) - F(2^{2n-1}) \equiv 0 \pmod{2^{2n}}$$
.

Proposition 4. The congruence

$$F(2^{2n+1}) + F(2^{2n}) \equiv 0 \pmod{2^{2n+1}}$$

holds for $n \geq 1$.

Sketch proof. Following a similar argument to that used in Proposition 2, we arrive at the congruence

$$\left(F\left(2^{2n+1}\right) - F\left(2^{2n}\right)\right) \left(F\left(2^{2n+1}\right) + F\left(2^{2n}\right)\right) \equiv 0 \pmod{2^{2n+2}}.$$
 (14)

By (4) and (5), F $(2^{2n}) \equiv 3 \pmod{4}$ and F $(2^{2n+1}) \equiv 1 \pmod{4}$. Thus the first factor F $(2^{2n+1}) - F(2^{2n})$ on the left side of (14) is $\equiv 2 \pmod{4}$, that is, F $(2^{2n+1}) - F(2^{2n})$ is twice an odd number. It follows from (14) that

$$\mathbf{F}\left(2^{2n+1}\right) + \mathbf{F}\left(2^{2n}\right) \equiv 0 \pmod{2^{2n+1}}. \square$$