The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341092 Rows of Pascal's triangle which contain a 3-term arithmetic progression of a certain form: a(n) = (2n^2 + 22n + 37 + (2n + 3)*(-1)^n)/8. 0
7, 12, 14, 21, 23, 32, 34, 45, 47, 60, 62, 77, 79, 96, 98, 117, 119, 140, 142, 165, 167, 192, 194, 221, 223, 252, 254, 285, 287, 320, 322, 357, 359, 396, 398, 437, 439, 480, 482, 525, 527, 572, 574, 621, 623, 672, 674, 725, 727, 780, 782, 837, 839, 896, 898, 957, 959 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Also, a(2k-1)=(k+2)^2-2; a(2k)=(k+3)^2-4, k>=1.
Conjecture (67) in Ralf Stephan's paper, "Prove or Disprove. 100 Conjectures from the OEIS" asks if it is true that: "The numbers n such that the n-th row of Pascal's triangle contains an arithmetic progresion are n = 19 ∨ n = (1/8)*[2*k^2 + 22k + 37 + (2k + 3)*(-1)^k], k > 0."
Proof: Let (n)_(k) denote the falling factorial. With any integer i>=3:
For a(n) = i^2-2, if we set x=binomial(i,2), and y=binomial(i-1,2), we can calculate three integers in arithmetic progression, {a,b,c}, such that a=[(x+y-2)_(y-2)*(y*(y-1))]/y!, b=[(x+y-2)_(y-2)*(x*y)]/y!, c =[(x+y-2)_(y-2)*(x*(x-1))]/y!; {a,b,c}={C(i^2-2,y-2), C(i^2-2,y-1), C(i^2-2, y)}.
For a(n) = (i+1)^2-4, if we set x=binomial(i+1,2), and y=binomial(i,2), we can calculate three integers in arithmetic progression, {a,b,c}, such that a=[(x+y-4)_(y-4)*(y)_(y-4)]/y!, b=[(x+y-4)_(y-4)*(x)_(2)*(y)_(2)]/y!, c =[(x+y-4)_(y-4)*(x)_(x-4)]/y!; {a,b,c}={C((i+1)^2-4,y-4), C((i+1)^2-4,y-2 ), C((i+1)^2-4,y)}.
Although row 19 contains a 3-term arithmetic progression it doesn't fit the pattern found here, so 19 is not in this sequence.
Conjecture 1: Row 19 is the only row that contains a 3-term AP that doesn't fit the pattern found here.
Conjecture 2: No row contains an AP of more than three coefficients.
A brute-force search of n<=1100 found no counterexample of either conjecture above.
LINKS
Ralf Stephan, Prove or Disprove. 100 Conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
EXAMPLE
With n=2, k=binomial(n+2=4,2)=6. m=binomial(n+3=5,2)-4+k=12. [C(m,k-4), C(m,k-2), C(m,k)] = [66,495,924], and [C(m+2,k-2), C(m+2,k-1), C(m+2,k)] = [1001,2002,3003], so a(2)=m=12 and a(3)=m+2=14.
PROG
(Python)
seq=[]
for n in range(2, 101):
k=int(((n)*(n+1))/2)
m=int(((n+1)*(n+2))/2)-4+k
if n==2:
seq.append(m+2)
else:
seq.append(m)
seq.append(m+2)
print(seq)
(PARI) a(n) = (2*n^2 + 22*n + 37 + (2*n + 3)*(-1)^n)/8 \\ Charles R Greathouse IV, Apr 02 2022
CROSSREFS
Sequence in context: A317670 A062730 A287562 * A351474 A349854 A073255
KEYWORD
nonn,easy
AUTHOR
J. Stauduhar, Feb 13 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 09:45 EDT 2024. Contains 373105 sequences. (Running on oeis4.)