Generalized Quaternion Rings over $\mathbb{Z} / n \mathbb{Z}$ for an Odd n

José María Grau, Celino Miguel and Antonio M. Oller-Marcén* ©
Communicated by Rafał Abłamowicz

Abstract

We consider a generalization of the quaternion ring $\left(\frac{a, b}{R}\right)$ over a commutative unital ring R that includes the case when a and b are not units of R. In this paper, we focus on the case $R=\mathbb{Z} / n \mathbb{Z}$ for and odd n. In particular, for every odd integer n we compute the number of non R-isomorphic generalized quaternion rings $\left(\frac{a, b}{\mathbb{Z} / n \mathbb{Z}}\right)$.

Mathematics Subject Classification. 11R52, 16-99.
Keywords. Quaternion algebra, $\mathbb{Z} / n \mathbb{Z}$, Structure.

1. Introduction

The origin of quaternions dates back to 1843 , when William Rowan Hamilton considered a 4 -dimensional vector space over \mathbb{R} with basis $\{1, i, j, k\}$ and defined an associative product given by the now classical rules $i^{2}=j^{2}=-1$ and $i j=-j i=k$. These so-called "Hamilton quaternions" turned out to be the only division algebra over \mathbb{R} with dimension greater than 2 . Later on, this idea was extended to define quaternion algebras over arbitrary fields. Thus, if F is a field and $a, b \in F \backslash\{0\}$ we can define a unital, associative, 4-dimensional algebra over F just considering a basis $\{1, i, j, k\}$ and the product given by $i^{2}=a, j^{2}=b$ and $i j=-j i=k$. The structure of quaternion algebras over fields of characteristic different from two is well-known. Indeed, such a quaternion algebra is either a division ring or isomorphic to the matrix ring $\mathbb{M}_{2}(F)$ [11, p.19]. This is no longer true if F is of characteristic 2 , since quaternions over $\mathbb{Z} / 2 \mathbb{Z}$ are not a division ring but they form a commutative ring, while $\mathbb{M}_{2}(\mathbb{Z} / 2 \mathbb{Z})$ is not commutative. Nevertheless, some authors consider a different product in the characteristic 2 case given by $i^{2}+i=a, j^{2}=b$, and $j i=(i+1) j=k$. The algebra defined by this product is isomorphic to the corresponding matrix ring.

[^0]Generalizations of the notion of quaternion algebra to other commutative base rings R have been considered by Kanzaki [5], Hahn [4], Knus [6], Gross and Lucianovic [3], Tuganbaev [15], and most recently by Voight $[16,17]$. Quaternions over finite rings have attracted significant attention since they have applications in coding theory see, $[9,10,14]$. In [2] the case $R=\mathbb{Z} / n \mathbb{Z}$ was studied proving the following result.
Theorem 1. [2, Theorem 4] Let n be an integer and let a, b be such that $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$. The following hold:
(i) If n is odd, then

$$
\left(\frac{a, b}{\mathbb{Z} / n \mathbb{Z}}\right) \cong \mathbb{M}_{2}(\mathbb{Z} / n \mathbb{Z})
$$

(ii) If $n=2^{s} m$ with $s>0$ and m odd, then

$$
\left(\frac{a, b}{\mathbb{Z} / n \mathbb{Z}}\right) \cong \begin{cases}\mathbb{M}_{2}(\mathbb{Z} / m \mathbb{Z}) \times\left(\frac{-1,-1}{\mathbb{Z} / 2^{s} \mathbb{Z}}\right), & \text { if } s=1 \text { or } a \equiv b \equiv-1 \quad(\bmod 4) \\ \mathbb{M}_{2}(\mathbb{Z} / m \mathbb{Z}) \times\left(\frac{1,1}{\mathbb{Z} / 2^{s} \mathbb{Z}}\right), & \text { otherwise. }\end{cases}
$$

In this paper, we extend the concept of quaternion rings over commutative, associative, unital rings to the case when i^{2} and j^{2} are not necessarily units of the ring R. In particular, we will focus on the case $R=\mathbb{Z} / n \mathbb{Z}$ for an odd n.

2. Basic Concepts

Let R be a commutative and associative ring with identity and let $H(R)$ denote the free R-module of rank 4 with basis $\{1, i, j, k\}$. That is,

$$
H(R)=\left\{x_{0}+x_{1} i+x_{2} j+x_{3} k: x_{0}, x_{1}, x_{2}, x_{3} \in R\right\}
$$

Now, let $a, b \in R$ and define an associative multiplication in $H(R)$ according to the following rules:

$$
\begin{aligned}
& i^{2}=a \\
& j^{2}=b \\
& i j=-j i=k
\end{aligned}
$$

Thus, we obtain an associative, unital ring called a quaternion ring over R which is denoted by $\left(\frac{a, b}{R}\right)$.
Definition 1. A standard basis of $\left(\frac{a, b}{R}\right)$ is any basis $\mathcal{B}=\{1, I, J, K\}$ of the free R-module $H(R)$ such that

$$
\begin{aligned}
I^{2} & =a \\
J^{2} & =b \\
I J & =-J I=K
\end{aligned}
$$

Given the standard basis $\{1, i, j, k\}$, the elements of the submodule $R\langle i, j, k\rangle$ are called pure quaternions. Note that the square of a pure quaternion always lays on R.

Remark 1. Given $q \in\left(\frac{a, b}{R}\right)$ and a fixed standard basis, there exist $x_{0} \in R$ and a pure quaternion q_{0} such that $q=x_{0}+q_{0}$. Observe that both x_{0} and q_{0} are uniquely determined and also that the only pure quaternion in R is 0 .

The following classical concepts are not altered by the fact that a and b are not necessarily units.

Definition 2. Consider the standard basis $\{1, i, j, k\}$ and let $q \in\left(\frac{a, b}{R}\right)$. Put $q=x_{0}+q_{0}$ with $x_{0} \in R$ and $q_{0}=x_{1} i+x_{2} j+x_{3} k$ a pure quaternion. Then,
(i) The conjugate of q is: $\bar{q}=x_{0}-q_{0}=x_{0}-x_{1} i-x_{2} j-x_{3} k$.
(ii) The trace of q is $\operatorname{tr}(q)=q+\bar{q}=2 x_{0}$.
(iii) The norm of q is $n(q)=q \bar{q}=x_{0}^{2}-q_{0}^{2}=x_{0}^{2}-a x_{1}^{2}-b x_{2}^{2}+a b x_{3}^{2}$.

Note that $n(q), \operatorname{tr}(q) \in R$ and $n\left(q_{1} q_{2}\right)=n\left(q_{1}\right) n\left(q_{2}\right)$.
Remark 2. Observe that, if q is a pure quaternion, then $\bar{q}=-q$ and $\operatorname{tr}(q)=0$. The converse also holds only if R has odd characteristic.

In what follows, we assume that an homomorphism f between two quaternion algebras over a ring R is also a R-module homomorphism. Hence, $f(1)=1$ and it fixes every element of the base ring R. For the sake of simplicity we will call them R-homomorphisms and an R-isomorphism is just a bijective R-homomorphism. Now, let $f:\left(\frac{a, b}{R}\right) \rightarrow\left(\frac{c, d}{R}\right)$ be a linear map and let us consider standard basis $\{1, i, j, k\}$ and $\{1, I, J, K\}$ of $\left(\frac{a, b}{R}\right)$ and $\left(\frac{c, d}{R}\right)$, respectively. It is clear that if $f(1)=1, f\left(i^{2}\right)=a, f\left(j^{2}\right)=b$ and $f(i j)=-f(j i)=f(k)$, then f induces a well-defined R-homomorphism between both quaternion rings. We will make extensive use of this fact in many subsequent results.

In the following result we will see that R-isomorphisms preserve conjugation. The classical proof in the case when a and b are units (see [1, Theorem 5.6] for instance) is no longer valid in our setting and it must be slightly modified.
Theorem 2. Let $f:\left(\frac{a, b}{R}\right) \rightarrow\left(\frac{c, d}{R}\right)$ be an R-isomorphism. Then, for every $q \in\left(\frac{a, b}{R}\right)$ it holds that $f(\bar{q})=\overline{f(q)}$.
Proof. Let $q \in\left(\frac{a, b}{R}\right)$ and put $q=x_{0}+q_{0}$ with $x_{0} \in R$ and q_{0} a pure quaternion. Then, $\bar{q}=x_{0}-q_{0}$ and $f(\bar{q})=f\left(x_{0}\right)-f\left(q_{0}\right)=x_{0}-f\left(q_{0}\right)$. On the other hand, $\overline{f(q)}=\overline{f\left(x_{0}+q_{0}\right)}=\overline{f\left(x_{0}\right)+f\left(q_{0}\right)}=\overline{x_{0}+f\left(q_{0}\right)}=x_{0}+\overline{f\left(q_{0}\right)}$. Hence, in order to prove the result, it is enough to prove that $\overline{f\left(q_{0}\right)}=-f\left(q_{0}\right)$ for every pure quaternion q_{0}.

Let us consider the standard basis $\{1, i, j, k\}$ of $\left(\frac{a, b}{R}\right)$. Then, $f(i)=$ $\alpha_{1}+q_{1}$ with $\alpha_{1} \in R$ and q_{1} a pure quaternion in $\left(\frac{c, d}{R}\right)$. Now, since $i^{2} \in R$ and taking into account that f fixes R, we have that $a=f(a)=f\left(i^{2}\right)=$
$f(i)^{2}=\left(\alpha_{1}+q_{1}\right)^{2}=\alpha_{1}^{2}+q_{1}^{2}+2 \alpha_{1} q_{1} \in R$. Consequently, $2 \alpha_{1} q_{1} \in R$ (because both α_{1}^{2} and q_{1}^{2} are in R) and since $2 \alpha_{1} q_{1}$ is a pure quaternion, it must be $2 \alpha_{1} q_{1}=0$. Thus, $f\left(2 \alpha_{1} i\right)=2 \alpha_{1} f(i)=2 \alpha_{1}^{2}$ and, since f fixes R, it follows that $2 \alpha_{1} i=0$ and also that $2 \alpha_{1}=0$. Equivalently, $\alpha_{1}=-\alpha_{1}$ and then, $\overline{f(i)}=\alpha_{1}-q_{1}=-\alpha_{1}-q_{1}=-f(i)$.

In the same way, it can be seen that $\overline{f(j)}=-f(j)$ and $\overline{f(k)}=-f(k)$. Thus, if $q_{0}=A i+B j+C k$ is a pure quaternion in $\left(\frac{a, b}{R}\right)$ we have that:

$$
\overline{f\left(q_{0}\right)}=A \overline{f(i)}+B \overline{f(j)}+C \overline{f(k)}=-A f(i)-B f(j)-C f(k)=-f\left(q_{0}\right)
$$

and the result follows.
Since both the trace and the norm are defined in terms of the conjugation, the following result easily follows from Theorem 2.
Corollary 1. Let $f:\left(\frac{a, b}{R}\right) \rightarrow\left(\frac{c, d}{R}\right)$ be a ring isomorphism. Then, for every $q \in\left(\frac{a, b}{R}\right)$ the following hold.
(i) $\operatorname{tr}(f(q))=\operatorname{tr}(q)$.
(ii) $\mathrm{n}(f(q))=\mathrm{n}(q)$.

Remark 3. Theorem 2 and Corollary 1 imply in particular that the conjugate, the trace and the norm of an element are independent from the standard basis of ($\frac{a, b}{R}$) used to compute them. Moreover, according to Remark 2, Theorem 2 implies that (in the odd characteristic case) every R-isomorphism preserves pure quaternions.
Proposition 1. Let R be a ring with odd characteristic and Let $f:\left(\frac{a, b}{R}\right) \rightarrow$ $\left(\frac{a, c}{R}\right)$ be an R-isomorphism. Then, for some pair of standard bases the matrix of f has the form

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \alpha_{1} & \alpha_{2} \\
0 & 0 & \beta_{1} & \beta_{2} \\
0 & 0 & \gamma_{1} & \gamma_{2}
\end{array}\right)
$$

with $\alpha_{1} a=\alpha_{2} a=0$.
Proof. Let $\{1, i, j, k\}$ be any standard basis in $\left(\frac{a, b}{R}\right)$. Since $f(i)^{2}=f\left(i^{2}\right)=a$, let us consider S the subalgebra of $\left(\frac{a, c}{R}\right)$ generated by $\{1, f(i)\}$ which is a Cayley-Dickson algebra of dimension 2 [13]. To apply the Cayley-Dickson process to S and c we consider the vector space $C=S \oplus S$ with a new product defined by [13, p. 45]:

$$
\left(s_{1}, s_{2}\right)\left(s_{3}, s_{4}\right)=\left(s_{1} s_{3}+c s_{4} \bar{s}_{2}, \bar{s}_{1} s_{4}+s_{3} s_{2}\right)
$$

With this product, is is easily seen that C is R-isomorphic to $\left(\frac{a, c}{R}\right)$. Moreover, the set $\{(1,0),(f(i), 0),(0,1),(0, f(i))\}$ is a standard basis of C. With this,
we have seen that we can extend the set $\{1, f(i)\}$ to a standard basis $\{1, I:=$ $f(i), J, K\}$ of $\left(\frac{a, c}{R}\right)$.

Now, since R has odd characteristic, f preserves pure quaternions. Thus, $f(j)=\alpha_{1} I+\beta_{1} J+\gamma_{1} K$ and $f(k)=\alpha_{2} I+\beta_{2} J+\gamma_{2} K$.

Finally, $f(k)=f(i j)=f(i) f(j)=I\left(\alpha_{1} I+\beta_{1} J+\gamma_{1} K\right)=\alpha_{1} a+\beta_{1} K+$ $\gamma_{1} a J$ must be a pure quaternion and hence $\alpha_{1} a=0$. In the same way it can be seen that $\alpha_{2} a=$ and the result follows.

In what follows, we will be interested in determining whether two different quaternion rings are R-isomorphic or not. The following R-isomorphism, which is well-known if a and b are units, also holds in our setting. The proof is straightforward.

Lemma 1. Let $a, b \in R$. Then,

$$
\left(\frac{a, b}{R}\right) \cong\left(\frac{b, a}{R}\right) .
$$

Nevertheless, some other easy R-isomorphisms that hold in the case when a and b are units, like

$$
\begin{equation*}
\left(\frac{a, b}{R}\right) \cong\left(\frac{a,-a b}{R}\right) \cong\left(\frac{b,-a b}{R}\right) \tag{1}
\end{equation*}
$$

are, as we will see, no longer generally true in our setting.

3. Some Results Regarding $\left(\frac{a, b}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ for a Prime \boldsymbol{p}

Throughout this section p will denote any prime. The next two results present some R-isomorphisms that will be useful in forthcoming sections. The first one (Lemma 2) is, in some sense, an analogue to the classical R-isomorphism (1). The second one (Lemma 3) presents some kind of descent principle.

Lemma 2. Let s, k be such that $0 \leq s \leq k w i t h 1 \leq k$ and let a and b be integers with $\operatorname{gcd}(a, p)=1$. Then,

$$
\left(\frac{a, b p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{a,-a b p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

Proof. Let us consider standard bases $\{1, i, j, k\}$ and $\{1, I, J, K\}$ of $\left(\frac{a, b p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ and $\left(\frac{a,-a b p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$, respectively. Then, the linear map f defined by $f(1)=1$, $f(I)=i, f(J)=k$ and $f(K)=a j$ clearly induces a well-defined R-homomorphism; which is bijective because its coordinate matrix

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & a \\
0 & 0 & 1 & 0
\end{array}\right)
$$

is regular over $\mathbb{Z} / p^{k} \mathbb{Z}$.

Lemma 3. Let $a_{i}(1 \leq i \leq 4)$ and $k \geq 1$ be integers such that

$$
\left(\frac{a_{1}, a_{2}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{a_{3}, a_{4}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

and let $0<s \leq k$. If $a_{i} \equiv a_{i}^{\prime}\left(\bmod p^{s}\right)$ for every $1 \leq i \leq 4$, then

$$
\left(\frac{a_{1}^{\prime}, a_{2}^{\prime}}{\mathbb{Z} / p^{s} \mathbb{Z}}\right) \cong\left(\frac{a_{3}^{\prime}, a_{4}^{\prime}}{\mathbb{Z} / p^{s} \mathbb{Z}}\right)
$$

Proof. Let f be an R-isomorphism between $\left(\frac{a_{1}, a_{2}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ and $\left(\frac{a_{3}, a_{4}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$. If A is the coordinate matrix of f with respect to some standard bases, it is obvious that A is regular over $\mathbb{Z} / p^{k} \mathbb{Z}$ and, consequently, also over $\mathbb{Z} / p^{s} \mathbb{Z}$.

Then, the linear map g between $\left(\frac{a_{1}^{\prime}, a_{2}^{\prime}}{\mathbb{Z} / p^{s} \mathbb{Z}}\right)$ and $\left(\frac{a_{3}^{\prime}, a_{4}^{\prime}}{\mathbb{Z} / p^{\mathbb{Z}}}\right)$ defined by the matrix A with respect to some standard bases, induces an R-isomorphism because $a_{i} \equiv a_{i}^{\prime}\left(\bmod p^{s}\right)$ for every i.

It is also interesting, and often harder, to determine whether two quaternion rings are not R-isomorphic. The following results go in this direction.

Lemma 4. Let p be a prime and consider integers a, b and c coprime to p. Also, let $0 \leq s \leq r<k$. Then, the quaternion rings R_{1}, R_{2} and R_{3} defined by

$$
R_{1}=\left(\frac{a p^{s}, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), \quad R_{2}=\left(\frac{c p^{s}, 0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), \quad R_{3}=\left(\frac{0,0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

are pairwise non R-isomorphic.
Proof. For each $i \in\{1,2,3\}$ let us define the set $\mathbb{P}_{i}:=\left\{q \in R_{i}: \operatorname{tr}(q)=0\right\}$. Due to Corollary 1 i), these sets are preserved by R-isomorphisms so, in order to show that R_{1}, R_{2} and R_{3} are pairwise non R-isomorphic, we will look for differences between the sets \mathbb{P}_{i}.

We begin by the odd p case. In this case the sets \mathbb{P}_{i} are precisely the sets of pure quaternions. First, we observe that for every element $q \in \mathbb{P}_{3}$ it holds that $q^{2}=0$, while \mathbb{P}_{1} and \mathbb{P}_{2} both clearly contain elements whose square is non-zero. This implies that R_{3} is not R-isomorphic to R_{1} or R_{2}. On the other hand, the set $\mathbb{P}_{2} \backslash p \mathbb{P}_{2}$ contains elements with zero square while this is not the case for $\mathbb{P}_{1} \backslash p \mathbb{P}_{1}$. This implies that R_{1} and R_{2} are not R-isomorphic.

In the $p=2$ case, the sets \mathbb{P}_{i} are no longer the sets of pure quaternions. Instead, we have that $\mathbb{P}_{i}=\left\{\alpha 2^{k-1}+q_{0}: q_{0}\right.$ is a pure quaternion $\}$ but we can reason in the exact same way.

Lemma 5. Let p be a prime and consider integers a, b, c and d coprime to p. Also, let $s_{1} \leq s_{2} \leq k$ and $s_{3} \leq s_{4} \leq k$ and assume that either $s_{1} \neq s_{3}$ or $s_{2} \neq s_{4}$. Then

$$
\left(\frac{a p^{s_{1}}, b p^{s_{2}}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \not \equiv\left(\frac{c p^{s_{3}}, d p^{s_{4}}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

Proof. Let us assume that both rings are R-isomorphic. Without loss of generality, we can also assume that $s_{1} \leq s_{3}$. Five different situations arise:
(i) If $s_{1}=s_{3}=s_{2}<s_{4}$, then Lemma 3 implies that

$$
\left(\frac{a p^{s_{1}}, b p^{s_{1}}}{\mathbb{Z} / p^{s_{4}} \mathbb{Z}}\right) \cong\left(\frac{c p^{s_{1}}, 0}{\mathbb{Z} / p^{s_{4}} \mathbb{Z}}\right)
$$

which contradicts Lemma 4.
(ii) If $s_{1}=s_{3}<s_{2}<s_{4}$, then due to Lemma 3 we have that

$$
\left(\frac{a p^{s_{1}}, b p^{s_{2}}}{\mathbb{Z} / p^{s_{4}} \mathbb{Z}}\right) \cong\left(\frac{c p^{s_{1}}, 0}{\mathbb{Z} / p^{s_{4}} \mathbb{Z}}\right)
$$

which contradicts Lemma 4.
(iii) If $s_{1}=s_{2}<s_{3}$, by Lemma 3 we have that

$$
\left(\frac{a p^{s_{1}}, b p^{s_{1}}}{\mathbb{Z} / p^{s_{3}} \mathbb{Z}}\right) \cong\left(\frac{0,0}{\mathbb{Z} / p^{s_{3} \mathbb{Z}}}\right)
$$

which contradicts Lemma 4 again.
(iv) If $s_{1}<s_{2} \leq s_{3}$, Lemma 3 implies that

$$
\left(\frac{a p^{s_{1}}, 0}{\mathbb{Z} / p^{s_{2}} \mathbb{Z}}\right) \cong\left(\frac{0,0}{\mathbb{Z} / p^{s_{2}} \mathbb{Z}}\right)
$$

contradicting Lemma 4.
(v) If $s_{1}<s_{3} \leq s_{2}$, Lemma 3 leads to

$$
\left(\frac{a p^{s_{1}}, 0}{\mathbb{Z} / p^{s_{3}} \mathbb{Z}}\right) \cong\left(\frac{0,0}{\mathbb{Z} / p^{s_{3}} \mathbb{Z}}\right)
$$

which is a contradiction due to Lemma 4.
Hence, in any case we reach a contradiction and the result follows.

4. Quaternions over $\mathbb{Z} / \boldsymbol{p}^{k} \mathbb{Z}$ for an Odd Prime p

This section is devoted to determine the number of different generalized quaternion rings over $\mathbb{Z} / p^{k} \mathbb{Z}$ for an odd prime p, up to R-isomorphism. Hence, throughout this section p will be assumed to be an odd prime.

Lemma 6. Let s and t be integers coprime to p such that st is a quadratic residue modulo p and let m be any integer. Then, for every $r \geq 0$,

$$
R=\left(\frac{t p^{r}, m}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{s p^{r}, m}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)=S
$$

Proof. Since $\operatorname{gcd}(s t, p)=1$, it follows that st is also a quadratic residue modulo p^{k} so let x be an integer such that $x^{2} \equiv t s^{-1}\left(\bmod p^{k}\right)$. Let us consider $\{1, i, j, k\}$ and $\{1, I, J, K\}$ standard bases of R and S, respectively. Then, the linear map $f: R \rightarrow S$ whose matrix with respect to these bases is

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & x & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & x
\end{array}\right)
$$

clearly induces a well-defined R-homomorphism because $f\left(i^{2}\right)=f(i)^{2}=$ $(x I)^{2}=x^{2} I^{2} \equiv t s^{-1} s p^{r} \equiv t p^{r}\left(\bmod p^{k}\right), f\left(j^{2}\right)=f(j)^{2}=J^{2}=m, f(i j)=$ $f(i) f(j)=x I J=x K=f(k)$ and $f(j i)=f(j) f(i)=J(x I)=x J I=$
$-x K=-f(k)$. Moreover, since A is regular over $\mathbb{Z} / p^{k} \mathbb{Z}$, it is in fact an R-isomorphism and the result follows.

Lemma 7. Let s be an integer such that $\operatorname{gcd}(p, s)=1$. Then, for every $r \geq 0$,

$$
R=\left(\frac{p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{s p^{r}, s p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)=S
$$

Proof. Let $x, y \in \mathbb{Z} / p^{k} \mathbb{Z}^{*}$ such that $x^{2}+y^{2} \equiv s^{-1}\left(\bmod p^{k}\right)($ such x, y exist due to [2, Proposition 1]). Now let us consider $\{1, i, j, k\}$ and $\{1, I, J, K\}$ standard bases of R and S, respectively. Then, the linear map whose matrix with respect to these bases is

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & x & -y & 0 \\
0 & y & x & 0 \\
0 & 0 & 0 & s^{-1}
\end{array}\right)
$$

induces a well-defined R-homomorphism because

$$
\begin{aligned}
f\left(i^{2}\right) & =f(i)^{2}=(x I+y J)^{2}=\left(x^{2}+y^{2}\right) s p^{r} \equiv p^{r} \quad\left(\bmod p^{k}\right) \\
f\left(j^{2}\right) & =f(j)^{2}=(-y I+x J)^{2}=\left(x^{2}+y^{2}\right) s p^{r} \equiv p^{r} \quad\left(\bmod p^{k}\right) \\
f(i j) & =f(i) f(j)=(x I+y J)(-y I+x J) \equiv\left(x^{2}+y^{2}\right) K \\
& \equiv s^{-1} K=f(k) \quad\left(\bmod p^{k}\right) \\
f(j i) & =f(j) f(i)=(-y I+x J)(x I+y J) \equiv-\left(x^{2}+y^{2}\right) K \\
& \equiv-s^{-1} K=-f(k) \quad\left(\bmod p^{k}\right)
\end{aligned}
$$

Since, in addition, A is regular over $\mathbb{Z} / p^{k} \mathbb{Z}$ it is an R-isomorphism and the proof is complete.

Lemma 8. Let u be a quadratic nonresidue modulo p with $p \nmid u$ and consider integers a and b coprime to p and let $0 \leq s$. Then,

$$
\begin{equation*}
\left(\frac{1, a p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{1, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \text { and }\left(\frac{u, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{u, b p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \tag{i}
\end{equation*}
$$

(ii) The isomorphism

$$
\left(\frac{1, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{u, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

holds if and only if $s=0$.
Proof. (i) To see that $R=\left(\frac{1, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{1, a p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)=S$, let us consider $\{1, i, j, k\}$ and $\{1, I, J, K\}$ standard bases of R and S, respectively. Consider $x, y \in \mathbb{Z} / p^{k} \mathbb{Z}$ such that $x^{2}-y^{2} \equiv a^{-1}\left(\bmod p^{k}\right)($ such x, y exist because it is enough to consider $x+y \equiv a^{-1}$ and $x-y \equiv 1$ and, since
p is odd, we can solve this system of equations). Then, the linear map whose matrix with respect to these bases is

$$
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & x & y \\
0 & 0 & y & x
\end{array}\right)
$$

induces a well-defined R-homomorphism because
$f\left(i^{2}\right)=f(i)^{2}=I^{2}=1$,
$f\left(j^{2}\right)=(x J+y K)^{2}=x^{2} J^{2}+y^{2} K^{2}=x^{2} a p^{s}-y^{2} a p^{s}=a p^{s}\left(x^{2}-y^{2}\right)$
$\equiv p^{s} \quad\left(\bmod p^{k}\right)$,
$f(i j)=f(i) f(j)=I(x J+y K)=y J+x K=f(k)$,
$f(j i)=f(j) f(i)=(x J+y K) I=-(y J+x K)=-f(k)$.
The fact that it is an R-isomorphism follows because A is regular over $\mathbb{Z} / p^{k} \mathbb{Z}$.

The remaining R-isomorphisms can be proved in a similar way.
(ii) Assume that $s>0$. To see that $\left(\frac{1, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \not \neq\left(\frac{u, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ it is enough to observe that $\left(\frac{1, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ does not contain any pure quaternion q with $q^{2}=u$. In fact, if $\{1, i, j, k\}$ is a standard basis, $q=a i+b j+c k$ and $q^{2}=a^{2}+\left(b^{2}-c^{2}\right) p^{s}$. Hence, if $q^{2} \equiv u\left(\bmod p^{k}\right)$ if follows that u is a quadratic residue modulo p, which is a contradiction.

On the other hand, if $s=0$, we know that $\left(\frac{1,1}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{u, 1}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ using [2, Theorem 4].

Lemma 9. Let u be a quadratic nonresidue modulo p with $p \nmid u$ and let $0<$ $s<k$. Then,
(i) $R_{1}=\left(\frac{u p^{s}, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \not \equiv\left(\frac{p^{s}, p^{s}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)=R_{2}$.
(ii) $S_{1}=\left(\frac{u p^{s}, 0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \not \equiv\left(\frac{p^{s}, 0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)=S_{2}$.

Proof. (i) Let us consider

$$
N_{i}:=\left\{q \in R_{i}: q \text { is a pure quaternion, } \mathrm{n}(q)=0\right\} .
$$

Since R-isomorphisms preserve norms and pure quaternions, in order to prove that $R_{1} \not \not R_{2}$ we will see that $\operatorname{card}\left(N_{1}\right) \neq \operatorname{card}\left(N_{2}\right)$. To do so, let $\{1, i, j, k\}$ and $\{1, I, J, K\}$ be standard bases of R_{1} and R_{2}, respectively. Then, if $q_{1} \in N_{1}$, it must be $q_{1}=x_{1} i+x_{2} j+x_{3} k$ with $x_{1}^{2} u p^{s}+x_{2}^{2} p^{s}-$ $x_{3}^{2} u p^{2 s} \equiv 0\left(\bmod p^{k}\right)$. On the other hand, if $q_{2} \in N_{2}$, it must be $q_{2}=$ $y_{1} I+y_{2} J+y_{3} K$ with $y_{1}^{2} p^{s}+y_{2}^{2} p^{s}-y_{3}^{2} p^{2 s} \equiv 0\left(\bmod p^{k}\right)$.

Now, let $\left(a_{1}, a_{2}, a_{3}\right) \in\left(\mathbb{Z} / p^{k-s} \mathbb{Z}\right)^{3}$ be a solution of the congruence $x_{1}^{2} u+x_{2}^{2}-x_{3}^{2} u p^{s} \equiv 0\left(\bmod p^{k-s}\right)$ and let us define $b_{i}=a_{i}+l_{i} p^{k-s}$ with $0 \leq l_{i}<p^{s}$. Then, it is straighforward that $\left(b_{1}, b_{2}, b_{3}\right) \in\left(\mathbb{Z} / p^{k} \mathbb{Z}\right)^{3}$ is a
solution of the congruence $x_{1}^{2} u p^{s}+x_{2}^{2} p^{s}-x_{3}^{2} u p^{2 s} \equiv 0\left(\bmod p^{k}\right)$. This implies that $\operatorname{card}\left(N_{1}\right) / p^{3 s}$ is the number of solutions of the congruence

$$
\begin{equation*}
x_{1}^{2} u+x_{2}^{2}-x_{3}^{2} u p^{s} \equiv 0 \quad\left(\bmod p^{k-s}\right), \tag{2}
\end{equation*}
$$

while it can be seen in the same way that $\operatorname{card}\left(N_{2}\right) / p^{3 s}$ is the number of solutions of the congruence

$$
\begin{equation*}
y_{1}^{2}+y_{2}^{2}-y_{3}^{2} p^{s} \equiv 0 \quad\left(\bmod p^{k-s}\right) \tag{3}
\end{equation*}
$$

Now, reducing modulo p, we can see that:

- If -1 is a quadratic residue modulo p (i.e., if $p \equiv 1(\bmod 4)$), then the congruence (3) has non-zero solutions while the congruence (2) has not.
- If -1 is not a quadratic residue modulo p (i.e., if $p \equiv 3(\bmod 4)$), then the congruence (2) has non-zero solutions while the congruence (3) has not.
In any case, it follows that $\operatorname{card}\left(N_{1}\right) \neq \operatorname{card}\left(N_{2}\right)$ as claimed.
(ii) For this case, it is enough to observe that S_{2} does not contain pure quaternions q such that $q^{2}=u p^{s}$, while S_{1} obviously does contain such type of elements. To do so, just note that the congruence $x^{2} p^{s} \equiv u p^{s}$ $\left(\bmod p^{k}\right)$ ha no solutions because u is a quadratic nonresidue modulo p.

Lemma 10. Let u be a quadratic nonresidue $(\bmod p)$ with $p \nmid u$ and let $0<$ $s<r<k$. Then, the quaternion rings $R_{1}=\left(\frac{u p^{s}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), R_{2}=\left(\frac{p^{s}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$, $R_{3}=\left(\frac{u p^{s}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ and $R_{4}=\left(\frac{p^{s}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ are pairwise non R-isomorphic.

Proof. Let us see that $R_{1} \nexists R_{2}, R_{1} \nsubseteq R_{4}, R_{2} \not \neq R_{3}$ and $R_{3} \not \not R_{4}$. If they were R-isomorphic, the due to Lemma 3 we would have (reducing modulo p^{r}) that $\left(\frac{u p^{s}, 0}{\mathbb{Z} / p^{r} \mathbb{Z}}\right) \cong\left(\frac{p^{s}, 0}{\mathbb{Z} / p^{r} \mathbb{Z}}\right)$, which contradicts Lemma 9.

Now, let us see that $R_{1} \nsubseteq R_{3}$. Assume that $R_{1} \cong R_{3}$. Then, due to Proposition 1, we can consider $\{1, i, j, k\}$ and $\{1, I, J, K\}$ standard bases of R_{1} and R_{3}, respectively such that the matrix of the R-isomorphism with respect to these bases is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & \alpha_{1} & \alpha_{2} \\
0 & 0 & \beta_{1} & \beta_{2} \\
0 & 0 & \gamma_{1} & \gamma_{2}
\end{array}\right)
$$

with $\alpha_{1} u p^{s}=0$.
In particular, $u p^{r}=j^{2}=f\left(j^{2}\right)=f(j)^{2}=\left(\alpha_{1} I+\beta_{1} J+\gamma_{1} K\right)^{2}=\alpha_{1}^{2} u p^{s}+$ $\beta_{1}^{2} p^{r}-\gamma_{1}^{2} u p^{r+s}=\beta_{1}^{2} p^{r}-\gamma_{1}^{2} u^{2} p^{r+s}$. In other words, $\beta_{1}^{2} p^{r}-\gamma_{1}^{2} u p^{r+s} \equiv u p^{r}$ $\left(\bmod p^{k}\right)$ but this implies that $\beta_{1}^{2}-\gamma_{1}^{2} u p^{s} \equiv u\left(\bmod p^{k-r}\right)$ and, consequently, that $\beta_{1}^{2} \equiv u(\bmod p)$ which is a contradiction because u is a quadratic nonresidue.

The remaining case, namely $R_{2} \not \not R_{4}$ can be proved in the exact same way.

Corollary 2. Let u be a quadratic nonresidue modulo p with $p \nmid u$. Consider integers a and b coprime to p and let $0<r$. Then,

$$
\left(\frac{a, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong \begin{cases}\left(\frac{u, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), & \text { if } a \text { is a quadratic nonresidue modulo } p \\ \left.\frac{1, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), & \text { if } a \text { is a quadratic residue modulo } p\end{cases}
$$

Proof. If a is a quadratic nonresidue:

$$
\left(\frac{a, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \underset{\operatorname{Lem} .8}{\cong}\left(\frac{a, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \stackrel{\text { Lem. } 6\left(\frac{u, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) . . ~ . ~}{\text {. }}
$$

Now, if a is a quadratic residue:

$$
\left(\frac{a, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \underset{\text { Lem. } 6}{\cong}\left(\frac{1, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \stackrel{\text { Lem. }}{\cong}\left(\frac{1, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) .
$$

Finally, $\left(\frac{u, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ and $\left(\frac{1, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ are not isomorphic due to Lemma 8.
Corollary 3. Let u be a quadratic nonresidue modulo p with $p \nmid u$. Consider integers a and b coprime to p and let $0<r$. Then,

$$
\left(\frac{a p^{r}, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong \begin{cases}\left(\frac{u p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), & \text { if ab is a quadratic nonresidue modulo } p \\ \left(\frac{p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), & \text { if ab is a quadratic residue modulo } p\end{cases}
$$

Proof. If $a b$ is a quadratic nonresidue, only one among a and b is a quadratic residue. We can assume without loss of generality that a is a quadratic residue and that b is a quadratic nonresidue (so $u b$ is a quadratic residue) and then:

$$
\left.\left(\frac{a p^{r}, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)_{\mathrm{Lem} .6}^{\cong}\left(\frac{a p^{r}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)_{\mathrm{Lem} .6} \stackrel{p^{r}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

Now, if $a b$ is a quadratic residue:

$$
\left(\frac{a p^{r}, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)_{\text {Lem. } 6}^{\cong}\left(\frac{b p^{r}, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \stackrel{\text { Lem. } 7}{\cong}\left(\frac{p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

Finally, $\left(\frac{p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ and $\left(\frac{u p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ are not isomorphic due to Lemma 9.
Corollary 4. Let u be a quadratic nonresidue modulo p with $p \nmid u$. Consider integers a and b coprime to p and let $0<s<r$. Then,

$$
\left(\frac{a p^{s}, b p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong \begin{cases}\left(\frac{u p^{s}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), & \text { if only } b \text { is a quadratic residue modulo } p \\ \left(\frac{p^{s}, u p^{r}}{\mathbb{Z} p^{k} \mathbb{Z}}\right), & \text { if only } a \text { is a quadratic residue } \quad(\bmod p) . \\ \left(\frac{p^{s}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right), & \text { if both } a \text { and } b \text { are quadratic residues modulo } p . \\ \left(\frac{u p^{s}, u p^{r}}{\mathbb{Z}, p^{k} \mathbb{Z}}\right), & \text { if both a and } b \text { are quadratic nonresidues modulo } p .\end{cases}
$$

Proof. Like in the previous results, it is enough to apply Lemma 6 repeatedly. The four different cases that arise are non-isomorphic due to Lemma 10.

Now, we can prove the main result of this section.

Theorem 3. Let p be an odd prime and let k be a positive integer. Then, there exist exactly $2 k^{2}+2$ non R-isomorphic generalized quaternion rings over $\mathbb{Z} / p^{k} \mathbb{Z}$.

Proof. Taking into account the previous results, any generalized quaternion ring over $\mathbb{Z} / p^{k} \mathbb{Z}$ is R-isomorphic to one of the following:

$$
\left(\frac{u p^{s}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{p^{s}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{u p^{s}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{p^{s}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

where u is a quadratic nonresidue $(\bmod p)$ with $p \nmid u$ and $0 \leq s \leq r \leq k$.

- If $0=s=r$, due to Lemmata 1, 7 and 8 , there is only one ring to consider, namely $\left(\frac{1,1}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$.
- If $0=s<r<k$, we must consider the rings

$$
\left(\frac{u, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{1, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{u, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{1, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

Due to Lemma 8 we know that $\left(\frac{u, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{u, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{1, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{1, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$ and $\left(\frac{u, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \not \equiv\left(\frac{1, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$. Hence, in this case we have 2 non R-isomorphic generalized quaternion rings for each $1 \leq r \leq k-1$. A total of $2(k-1)$.

- If $0=s$ and $k=r$ we must only consider the rings

$$
\left(\frac{u, 0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{1,0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

which are non-isomorphic due to Lemma 8. Thus, in this case we have 2 non R-isomorphic generalized quaternion rings.

- If $0<s=r<k$, we must consider the rings

$$
\left(\frac{u p^{r}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{p^{r}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{u p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

Using Lemma 1, Lemma 7 and Lemma 9 we know that $\left(\frac{u p^{r}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong$ $\left(\frac{p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \nexists\left(\frac{u p^{r}, p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right) \cong\left(\frac{p^{r}, u p^{r}}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$. Hence, in this case we have 2 non R-isomorphic generalized quaternion rings for each $1 \leq r \leq k-1$ for a total of $2(k-1)$.

- If $0<s<r<k$, Lemma 10 implies that the four rings are non R isomorphic. Hence, in this case we have 2 non R-isomorphic generalized quaternion rings for each $1 \leq s \leq k-2$ and each $s+1 \leq r \leq k-1$. A total of $2(k-2)(k-1)$.
- If $0<s<r=k$, we must only consider the rings

$$
\left(\frac{u p^{s}, 0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right),\left(\frac{p^{s}, 0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)
$$

which are non R-isomorphic due to Lemma 9. Thus, in this case we have 2 non R-isomorphic generalized quaternion rings for each $1 \leq s \leq k-1$. A total of $2(k-1)$.

- If $s=r=k$ there is only one ring to consider, namely $\left(\frac{0,0}{\mathbb{Z} / p^{k} \mathbb{Z}}\right)$.

Finally, taking into consideration all the previous information, we conclude that there exist

$$
1+2(k-1)+2+2(k-1)+2(k-2)(k-1)+2(k-1)+1=2 k^{2}+2
$$

non R-isomorphic generalized quaternion rings over $\mathbb{Z} / p^{k} \mathbb{Z}$.
Remark 4. The sequence $a_{k}=2 k^{2}+2$ is sequence A005893 in the OEIS.

5. Quaternions over $\mathbb{Z} / n \mathbb{Z}$ for an Odd n

Note that if $n=p_{1}^{r_{1}} \ldots p_{k}^{r_{k}}$ is the prime factorization of n, then by the Chinese Remainder Theorem we have that

$$
\begin{equation*}
\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / p_{1}^{r_{1}} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / p_{k}^{r_{k}} \mathbb{Z} \tag{4}
\end{equation*}
$$

Decomposition (4) induces a natural R-isomorphism

$$
\begin{equation*}
\left(\frac{a, b}{\mathbb{Z} / n \mathbb{Z}}\right) \cong\left(\frac{a, b}{\mathbb{Z} / p_{1}^{r_{1}} \mathbb{Z}}\right) \oplus \cdots \oplus\left(\frac{a, b}{\mathbb{Z} / p_{k}^{r_{k}} \mathbb{Z}}\right) \tag{5}
\end{equation*}
$$

Consequently, if we denote by $\omega(n)$ the number of different primes dividing n and by $\nu_{p}(n)$ the p-adic order of n we obtain the following corollary to Theorem 3.

Corollary 5. Let n be an odd integer. Then, the number of non R-isomorphic generalized quaternion rings over $\mathbb{Z} / n \mathbb{Z}$ is

$$
2^{\omega(n)} \prod_{p \mid n}\left(\nu_{p}(n)^{2}+1\right)
$$

References

[1] Conrad, K. Quaternion algebras. http://www.math.uconn.edu/~kconrad/ blurbs/ringtheory/quaternionalg.pdf (2016). Accesed 25 May 2017
[2] Grau, J.M., Miguel, C.J., Oller-Marcén, A.M.: On the structure of quaternion rings over $\mathbb{Z} / n \mathbb{Z}$. Adv. Appl. Clifford Algebras 25(4), 875-887 (2015)
[3] Gross, B.H., Lucianovic, M.W.: On cubic rings and quaternion rings. J. Number Theory 129(6), 1468-1478 (2009)
[4] Hahn, A.J.: Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups (Universitext). Springer, New York (1994)
[5] Kanzaki, T.: On non-commutative quadratic extensions of a commutative ring. Osaka J. Math. 10, 597-605 (1973)
[6] Knus, M.-A.: Quadratic and Hermitian Forms Over Rings, vol. 294. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1991)
[7] Miguel, C.J., Serôdio, R.: On the structure of quaternion rings over \mathbb{Z}_{p}. Int. J. Algebra 5(25-28), 1313-1325 (2011)
[8] O'Meara, T.: Introduction to Quadratic Forms. Classics in Mathematics. Springer, Berlin (2000)
[9] Özdemir, M.: The roots of a split quaternion. Appl. Math. Lett. 22(2), 258-263 (2009)
[10] Özen, M., Güzeltepe, M.: Cyclic codes over some finite quaternion integer rings. J. Frankl. Inst. 348(7), 1312-1317 (2011)
[11] Pierce, R.S.: Associative Algebras. Springer, New York (1982)
[12] Rosen, K.H.: Elementary Number Theory and Its Applications. AddisonWesley, Reading (2000)
[13] Schafer, R.D.: An Introduction to Nonassociative Algebras. Dover Publications, New York (1995)
[14] Shah, T., Rasool, S.S.: On codes over quaternion integers. Appl. Algebra Eng. Commun. Comput. 24(6), 477-496 (2013)
[15] Tuganbaev, A.A.: Quaternion algebras over commutative rings (Russian). Math. Notes 53(1-2), 204-207 (1993)
[16] Voight, J.: Characterizing quaternion rings over an arbitrary base. J. Reine Angew. Math. 657, 113-134 (2011)
[17] Voight, J.: Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms. In: Alladi, K., Bhargava, M., Savitt, D., Tiep, P.H. (eds.) Quadratic and Higher Degree Forms, pp. 255-298. Springer, New York (2013)

José María Grau
Departamento de Matemáticas
Universidad de Oviedo
Avda. Calvo Sotelo s/n
33007 Oviedo
Spain
e-mail: grau@uniovi.es
Celino Miguel
Instituto de Telecomunicaçoes
Universidade de Beira Interior
Polo de Covilha
Portugal
e-mail: celino@ubi.pt
Antonio M. Oller-Marcén
Centro Universitario de la Defensa de Zaragoza
Ctra. Huesca s/n
50090 Saragossa
Spain
e-mail: oller@unizar.es

Received: May 31, 2017.
Accepted: January 23, 2018.

[^0]: *Corresponding author.

