The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338873 Array T(n, m) read by ascending antidiagonals: numerators of shifted Bernoulli numbers B(n, m) where m >= 0. 4

%I #42 Jan 20 2021 18:49:50

%S 1,-1,1,1,-1,1,-1,1,-1,1,1,0,-1,-1,1,-1,-1,1,-19,-1,1,1,0,11,-53,-19,

%T -1,1,-1,1,43,-3113,-709,-713,-1,1,1,0,-289,349,-28813,-63367,-629,-1,

%U 1,-1,-1,-313,174947,-46721,-34877471,-351541,-1493,-1,1,1,0,-581,704101,-20744051,-2449743889,-176710589,-18054401,-36287,-1,1

%N Array T(n, m) read by ascending antidiagonals: numerators of shifted Bernoulli numbers B(n, m) where m >= 0.

%H Stefano Spezia, <a href="/A338873/b338873.txt">First 30 antidiagonals of the array, flattened</a>

%H Takao Komatsu, <a href="https://www.researchgate.net/publication/344595540_SHIFTED_BERNOULLI_NUMBERS_AND_SHIFTED_FUBINI_NUMBERS">Shifted Bernoulli numbers and shifted Fubini numbers</a>, Linear and Nonlinear Analysis, Volume 6, Number 2, 2020, 245-263.

%F T(n, m) = numerator(B(n, m)).

%F B(n, m) = [x^n] n!*x^m/(exp(x) - E_m(x) + x^m), where E_m(x) = Sum_{n=0..m} x^n/n! (see Equation 2.1 in Komatsu).

%F B(n, m) = - Sum_{k=0..n-1} n!*B(k, m)/((n - k + m)!*k!) for n > 0 (see Lemma 2.1 in Komatsu).

%F B(n, m) = n!*Sum_{k=1..n} (-1)^k*Sum_{i_1+...+i_k=n; i_1,...,i_k>=1} Product_{j=1..k} 1/(i_j + m)! for n > 0 (see Theorem 2.2 in Komatsu).

%F B(n, m) = (-1)^n*n!*det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in 1/(m + 1)!, 1, 0, ..., 0 and whose first column consists in 1/(m + 1)!, 1/(m + 2)!, ..., 1/(m + n)! (see Theorem 2.3 in Komatsu).

%F B(1, m) = -1/(m + 1)! (see Theorem 2.4 in Komatsu).

%F B(n, m) = n!*Sum_{t_1+2*t_2+...+n*t_n=n} (t_1,...,t_n)!*(-1)^(t_1+…+t_n)*Product_{j=1..n} (1/(m + j)!)^t_j for n >= m >= 1 (see Theorem 2.7 in Komatsu).

%F (-1)^n/(n + m)! = det(M(n, m)) where M(n, m) is the n X n Toeplitz matrix whose first row consists in B(1, m), 1, 0, ..., 0 and whose first column consists in B(1, m), B(2, m)/2!, ..., B(n, m)/n! (see Theorem 2.8 in Komatsu).

%F Sum_{k=0..n} binomial(n, k)*B(k, m)*B(n-k, m) = - n!/(m^2*m!)*Sum_{l=0..n-1} ((m! - 1)/(m*m!))^(n-l-1)*(l*(m! - 1) + m)/l!*B(l, m) - (n - m)/m*B(n, m) for m > 0 (see Theorem 4.1 in Komatsu).

%e Array T(n, m):

%e n\m| 0 1 2 3 4 ...

%e ---+------------------------------------

%e 0 | 1 1 1 1 1 ...

%e 1 | -1 -1 -1 -1 -1 ...

%e 2 | 1 1 -1 -19 -19 ...

%e 3 | -1 0 1 -53 -709 ...

%e 4 | 1 -1 11 -3113 -28813 ...

%e ...

%e Related table of shifted Bernoulli numbers B(n, m):

%e 1 1 1 1 1 ...

%e -1 -1/2 -1/6 -1/24 -1/120 ...

%e 1 1/6 -1/36 -19/1440 -19/7200 ...

%e -1 0 1/180 -53/11520 -709/672000 ...

%e 1 -1/30 11/1080 -3113/2419200 -28813/60480000 ...

%e ...

%t B[n_,m_]:=n!Coefficient[Series[x^m/(Exp[x]-Sum[x^k/k!,{k,0,m}]+x^m),{x,0,n}],x,n]; Table[Numerator[B[n-m,m]],{n,0,10},{m,0,n}]//Flatten

%Y Cf. A000012 (1st row), A027641 (2nd column), A027642, A033999 (1st column), A141056, A164555, A176327, A226513 (high-order Fubini numbers), A338875, A338876.

%Y Cf. A338874 (denominators).

%K sign,frac,tabl

%O 0,19

%A _Stefano Spezia_, Nov 13 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 17:39 EDT 2024. Contains 372765 sequences. (Running on oeis4.)