The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338144 Triangle read by rows: T(n,k) is the number of chiral pairs of colorings of the edges of a regular n-D orthotope (or ridges of a regular n-D orthoplex) using exactly k colors. Row n has n*2^(n-1) columns. 4
0, 0, 0, 3, 3, 0, 74, 10482, 303268, 3440700, 19842840, 65867760, 133580160, 168399000, 128898000, 54885600, 9979200, 0, 11158298, 4825419243699, 48019052798280376, 60392832865887732525, 20362602448352682660450 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Chiral colorings come in pairs, each the reflection of the other. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is a cube (octahedron) with 12 edges. The number of edges (ridges) is n*2^(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,...,3,3} and {3,3,...,4} respectively, with n-2 3's in each case. The figures are mutually dual.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
LINKS
FORMULA
A337409(n,k) = Sum_{j=1..n*2^(n-1)} T(n,j) * binomial(k,j).
T(n,k) = A338142(n,k) - A338143(n,k) = (A338142(n,k) - A338145(n,k)) / 2 = A338143(n,k) - A338145(n,k).
T(2,k) = A338148(2,k) = A325018(2,k) = A325010(2,k); T(3,k) = A338148(3,k).
EXAMPLE
Triangle begins with T(1,1):
0
0 0 3 3
0 74 10482 303268 3440700 19842840 65867760 133580160 168399000
...
For T(2,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB. For T(2,4)=3, the chiral pairs are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1+2x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n-m]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3, n}]], 1, -1]Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
array[n_, k_] := row[n] /. b -> k
Table[LinearSolve[Table[Binomial[i, j], {i, 2^(n-m)Binomial[n, m]}, {j, 2^(n-m)Binomial[n, m]}], Table[array[n, k], {k, 2^(n-m)Binomial[n, m]}]], {n, m, m+4}] // Flatten
CROSSREFS
Cf. A338142 (oriented), A338143 (unoriented), A338145 (achiral), A337409 (k or fewer colors), A325018 (orthotope vertices, orthoplex facets).
Cf. A327089 (simplex), A338148 (orthoplex edges, orthotope ridges).
Sequence in context: A111843 A119537 A338148 * A031438 A096964 A350483
KEYWORD
nonn,tabf
AUTHOR
Robert A. Russell, Oct 12 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 13:51 EDT 2024. Contains 373217 sequences. (Running on oeis4.)