The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337411 Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors. 9

%I #16 Aug 28 2020 11:04:19

%S 1,2,1,3,6,1,4,24,218,1,5,70,2285,90054,1,6,165,703760,1471640157,

%T 573439556,1,7,336,10194250,1466049174160,6332134720430727,

%U 50043770249328,1,8,616,90775566,310441584462375,629648890639384572032,1839894096099964270283469,59966884221697869216,1

%N Array read by descending antidiagonals: T(n,k) is the number of oriented colorings of the edges of a regular n-dimensional orthoplex (cross polytope) using k or fewer colors.

%C Each chiral pair is counted as two when enumerating oriented arrangements. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges. For n=3, the figure is an octahedron with 12 edges. The number of edges is 2n*(n-1) for n>1.

%C Also the number of oriented colorings of the regular (n-2)-dimensional orthotopes (hypercubes) in a regular n-dimensional orthotope.

%H K. Balasubramanian, <a href="https://doi.org/10.33187/jmsm.471940">Computational enumeration of colorings of hyperplanes of hypercubes for all irreducible representations and applications</a>, J. Math. Sci. & Mod. 1 (2018), 158-180.

%F The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).

%F T(n,k) = A337412(n,k) + A337413(n,k) = 2*A337412(n,k) - A337414(n,k) = 2*A337413(n,k) + A337414(n,k).

%e Table begins with T(1,1):

%e 1 2 3 4 5 6 7 8 9 ...

%e 1 6 24 70 165 336 616 1044 1665 ...

%e 1 218 22815 703760 10194250 90775566 576941778 2863870080 11769161895 ...

%e For T(2,2)=6, the arrangements are AAAA, AAAB, AABB, ABAB, ABBB, and BBBB.

%t m=1; (* dimension of color element, here an edge *)

%t Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, m+1]];

%t FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}];DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);

%t CCPol[r_List] := (r1 = r; r2 = cs - r1; If[EvenQ[Sum[If[EvenQ[j3], r1[[j3]], r2[[j3]]], {j3,n}]], (per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]],1,j2], 2j2], {j2,n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]),0]);

%t PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0,cs]]]);

%t pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)

%t row[m]=b;

%t row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^(n-1))]

%t array[n_, k_] := row[n] /. b -> k

%t Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

%Y Cf. A337412 (unoriented), A337413 (chiral), A337414 (achiral).

%Y Rows 1-4 are A000027, A006528, A060530, A331354.

%Y Cf. A327083 (simplex edges), A337407 (orthotope edges), A325004 (orthoplex vertices).

%K nonn,tabl

%O 1,2

%A _Robert A. Russell_, Aug 26 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 06:26 EDT 2024. Contains 373115 sequences. (Running on oeis4.)