login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337392 Minimum m such that the convergence speed of m^^m is equal to n >= 2, where A317905(n) represents the convergence speed of m^^m (and m = A067251(n), the n-th non-multiple of 10). 4
5, 25, 15, 95, 65, 385, 255, 1535, 1025, 6145, 4095, 24575, 16385, 98305, 65535, 393215, 262145, 1572865, 1048575, 6291455, 4194305, 25165825, 16777215, 100663295, 67108865, 402653185, 268435455, 1610612735, 1073741825, 6442450945, 4294967295, 25769803775 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
This sequence has an unbounded number of terms, since it has been proved that the congruence speed (aka "convergence speed") of m^^m (an integer number by definition) covers any value from zero (iff m = 1) to infinity. In particular, for any n >= 2, a(n) == 5 (mod 10).
From Marco Ripà, Dec 19 2021: (Start)
Moreover, given any m which is congruent to 5 (mod 10), the congruence speed of m corresponds to the 2-adic valuation of (m^2 - 1) minus 1 (e.g., the congruence speed of 15 is equal to 4 since (15^2 - 1) is divisible by 2 exactly 5 times, so that 5 - 1 = 4 = congruence speed of the tetration base 15).
The aforementioned result, let us easily calculate the exact number of stable digits (#S(m, b)) of any tetration m^^b (i.e., the number of its last "frozen" digits) such that m is congruent to 5 (mod 10), for any b >= 3, as follows:
Let k = 1, 2, 3, ...
If m = 20*k - 5, then #S(m, b > 2) = b*(v_2(m^2 - 1) - 1) + 1;
If m = 20*k + 5, then #S(m, b > 2) = (b + 1)*(v_2(m^2 - 1) - 1);
If m = 5, then #S(m, 1) = 1, #S(m, 2) = 3, #S(m, 3) = 4, #S(m, b > 3) = 2.
(End)
REFERENCES
Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6
LINKS
Marco Ripà, On the constant congruence speed of tetration, Notes on Number Theory and Discrete Mathematics, Volume 26, 2020, Number 3, Pages 245—260.
Marco Ripà, The congruence speed formula, Notes on Number Theory and Discrete Mathematics, 2021, 27(4), 43-61.
FORMULA
a(n) = 2^n*(2*cos(Pi*(n-1)/2) - 4*sin(Pi*(n-1)/2) + 5) + 1 iff n == {2,3} (mod 4), 2^n*(-2*cos(Pi*(n-1)/2) + 4*sin(Pi*(n-1)/2) + 5) - 1) iff n == {0,1} (mod 4), for any n >= 2.
From Bruno Berselli, Sep 11 2020: (Start)
O.g.f.: 5*x^2*(1 + 5*x + 4*x^3)/((1 - 2*x)*(1 + 2*x)*(1 + x^2)).
a(n) = (2 - (-1)^n)*2^n + i^((n+1)*(n+2)), with i = sqrt(-1). (End)
From Marco Ripà, Dec 19 2021: (Start)
n = v_2(a(n)^2 - 1) - 1, where v_2(x) indicates the 2-adic valuation of x. (End)
EXAMPLE
For n = 4, a(4) = 15 by Corollary 1 of "https://doi.org/10.7546/nntdm.2021.27.4.43-61" (see Equation 20). - Marco Ripà, Dec 19 2021
CROSSREFS
Sequence in context: A328756 A070378 A070384 * A070377 A070383 A070061
KEYWORD
nonn,base,easy
AUTHOR
Marco Ripà, Aug 25 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 1 12:50 EDT 2024. Contains 372170 sequences. (Running on oeis4.)