login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337217 One half of the even numbers of A094739. 2
1, 3, 5, 7, 11, 15, 21, 23, 29, 35, 39, 71, 95 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This finite sequence a(n), for n = 1, 2, ..., 13, appears as eq. (2.3) given by Kaplansky on p. 87.
It enters Theorem 2.1 of Kaplansky, p. 87, with proof on p. 90 (here reformulated): The positive integers uniquely represented by x^2 + y^2 + 2*z^2, with 0 <= x <= y and 0 <= z, consist of the 13 numbers a(n) and 4^k*6 = A002023(k), for integers k >= 0. See a comment in A002023 for this uniquely representable positive integers of this ternary form.
It also enters Theorem 2.3 of Kaplansky, p. 88, with proof on p.91 (here reformulated): The positive integers uniquely represented by x^2 + 2*y^2 + 4*z^2, with nonnegative integers x, y, z consist of the 13 odd numbers a(n) and the four even numbers 2, 10, 26, and 74. This is the finite sequence
1, 2, 3, 5, 7, 10, 11, 15, 21, 23, 26, 29, 35, 39, 71, 74, 95.
REFERENCES
Irving Kaplansky, Integers Uniquely Represented by Certain Ternary Forms, in "The Mathematics of Paul Erdős I", Ronald. L. Graham and Jaroslav Nešetřil (Eds.), Springer, 1997, pp. 86 - 94.
LINKS
CROSSREFS
Sequence in context: A007665 A208994 A194602 * A333380 A361826 A177139
KEYWORD
nonn,fini,full
AUTHOR
Wolfdieter Lang, Aug 20 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 17:41 EDT 2024. Contains 372312 sequences. (Running on oeis4.)