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Abstract

In this short note, we prove a conjecture posed by Professor Simon
Plouffe.

1 Introduction

Let τ3(n) be the number of spanning trees in the 3rd power of a cycle of
length n. In [1], Professor Simon Plouffe stated the following conjecture:
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Conjecture 1.1. {
τ3(n) = 2nT (n)2 if n is even,
τ3(n) = nT (n)2 if n is odd.

where
T (n+ 8) = 4T (n+ 6) + T (n+ 4) + 4T (n+ 2)− T (n).

We remark that the original conjecture in [1] provided ambiguous infor-
mation, which is already fixed in [1].

In this short note, we give a proof of Conjecture 1.1. The proof is a
consiquence of [2, Theorem 1].

This paper is organized as follows. In Section 2, we give a proof of Con-
jecture 1.1. In Section 3, using a result of [2], we give an anothe expression
for τ3(n).

2 Proof of Conjecture 1.1

Let T (n) be the numbers in A005822. Then we have

Theorem 2.1 ([3]). {
τ3(n) = 2nT (n)2 if n is even,
τ3(n) = nT (n)2 if n is odd.

where
T (n+ 8) = 4T (n+ 6) + T (n+ 4) + 4T (n+ 2)− T (n).

Proof. The proof is similar to the discussion in [3, p.347 Theorem 9]. Let

f = 1 + 3x+ 6x2 + 3x3 + x4.

We denote by
a1, a2

its roots up to conjugate. Let

a(n) :=
(1− an1 )(1− an2 )√

14
√

(a1a2)n

Then
τ3(n) = na(n)2
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and we have a(n)

a(n+ 4) =
√
2a(n+ 3) + a(n+ 2) +

√
2a(n+ 1)− a(n)

Then we obtain the following:

a(n+ 8) = 4a(n+ 6) + a(n+ 4) + 4a(n+ 2)− a(n).

It is easy to check that{
T (n) = 1/

√
2a(n) if n is even,

T (n) = a(n) if n is odd.

3 An expression for τ3(n)

By [2, Theorem 1], we have the following:

Theorem 3.1 ([2, Theorem 1]). Let

T (n, z) := cos(n arccos(z))

z1 :=
−3 +

√
−7

4
, z2 :=

−3−
√
−7

4
.

Then we have the following:

τ3(n) :=
2n

7
(T (n, z1)− 1)(T (n, z2)− 1).
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