A note on spanning trees

Yoshiaki Doi, Tsuyoshi Miezaki† ${ }^{\dagger}$ Tomoki Nakamigawa ${ }^{\ddagger}$
Tadashi Sakuma ${ }^{\S}$, Etsuo Segawa, Hidehiro Shinoharall Shunya Tamura,**Yuho Tanaka, ${ }^{\dagger}$ Kosuke Toyotał\# ${ }^{\ddagger}$

Abstract

In this short note, we prove a conjecture posed by Professor Simon Plouffe.

1 Introduction

Let $\tau_{3}(n)$ be the number of spanning trees in the 3rd power of a cycle of length n. In [1], Professor Simon Plouffe stated the following conjecture:

[^0]
Conjecture 1.1.

$$
\left\{\begin{array}{l}
\tau_{3}(n)=2 n T(n)^{2} \text { if } n \text { is even, } \\
\tau_{3}(n)=n T(n)^{2} \text { if } n \text { is odd. }
\end{array}\right.
$$

where

$$
T(n+8)=4 T(n+6)+T(n+4)+4 T(n+2)-T(n)
$$

We remark that the original conjecture in [1] provided ambiguous information, which is already fixed in [1].

In this short note, we give a proof of Conjecture 1.1. The proof is a consiquence of [2, Theorem 1].

This paper is organized as follows. In Section 2, we give a proof of Conjecture 1.1. In Section 3, using a result of [2], we give an anothe expression for $\tau_{3}(n)$.

2 Proof of Conjecture 1.1

Let $T(n)$ be the numbers in A005822. Then we have
Theorem 2.1 ([3]).

$$
\left\{\begin{array}{l}
\tau_{3}(n)=2 n T(n)^{2} \text { if } n \text { is even }, \\
\tau_{3}(n)=n T(n)^{2} \text { if } n \text { is odd. }
\end{array}\right.
$$

where

$$
T(n+8)=4 T(n+6)+T(n+4)+4 T(n+2)-T(n) .
$$

Proof. The proof is similar to the discussion in [3, p. 347 Theorem 9]. Let

$$
f=1+3 x+6 x^{2}+3 x^{3}+x^{4} .
$$

We denote by

$$
a_{1}, a_{2}
$$

its roots up to conjugate. Let

$$
a(n):=\frac{\left(1-a_{1}^{n}\right)\left(1-a_{2}^{n}\right)}{\sqrt{14} \sqrt{\left(a_{1} a_{2}\right)^{n}}}
$$

Then

$$
\tau_{3}(n)=n a(n)^{2}
$$

and we have $a(n)$

$$
a(n+4)=\sqrt{2} a(n+3)+a(n+2)+\sqrt{2} a(n+1)-a(n)
$$

Then we obtain the following:

$$
a(n+8)=4 a(n+6)+a(n+4)+4 a(n+2)-a(n) .
$$

It is easy to check that

$$
\left\{\begin{array}{l}
T(n)=1 / \sqrt{2} a(n) \text { if } n \text { is even, } \\
T(n)=a(n) \text { if } n \text { is odd }
\end{array}\right.
$$

3 An expression for $\tau_{3}(n)$

By [2, Theorem 1], we have the following:
Theorem 3.1 ([2, Theorem 1]). Let

$$
\begin{gathered}
T(n, z):=\cos (n \arccos (z)) \\
z_{1}:=\frac{-3+\sqrt{-7}}{4}, z_{2}:=\frac{-3-\sqrt{-7}}{4} .
\end{gathered}
$$

Then we have the following:

$$
\tau_{3}(n):=\frac{2 n}{7}\left(T\left(n, z_{1}\right)-1\right)\left(T\left(n, z_{2}\right)-1\right)
$$

Acknowledgments

The authors are supported by JSPS KAKENHI (18K03217, 18K03388).

References

[1] OEIS Foundation Inc. (2020), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A005822.
[2] A. D. Mednykh, I. A. Mednykh, The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic, Discrete Math. 342 (2019), no. 6, 1772-1781.
[3] Y. Zhang, X. Yong, M. J. Golin, The number of spanning trees in circulant graphs, Discrete Math., 223 (2000), no. 1-3, 337-350.

[^0]: *Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan
 ${ }^{\dagger}$ Faculty of Education, Ryukyu University, Okinawa, 903-0213, Japan, miezaki@edu.uryukyu.ac.jp
 ${ }^{\ddagger}$ Department of Information Science Shonan Institute of Technology 1-1-25 TsujidoNishikaigan, Fujisawa 251-8511, Japan
 ${ }^{\text {§}}$ Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
 ${ }^{\text {a }}$ Graduate School of Education Center and Graduate School of Environment Information Sciences, Yokohama National University, Hodogaya, Yokohama 240-8501, Japan.
 |Institute for Excellence in Higher Education, Tohoku University, Miyagi 980-8576, Japan
 ${ }^{* *}$ Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan
 ${ }^{\dagger} \dagger$ Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan
 ${ }^{\ddagger \ddagger}$ Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan

