The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327896 a(n) is the minimum number of tiles needed for constructing a polyiamond with n holes. 0
9, 14, 19, 23, 27, 31, 35, 39, 43, 47, 51, 54, 58, 62, 65, 69, 73, 76, 80, 83, 87, 90, 94, 97, 101, 104, 108, 111, 115, 118, 122, 125, 129, 132, 135, 139, 142, 146, 149, 152, 156, 159, 163, 166, 169, 173, 176, 179, 183, 186, 189, 193, 196, 199, 203, 206, 209, 213 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
For n > 0, it is easy to prove that k(n) = floor((3 + sqrt(3*(3+8*n)))/6) is the unique integer that satisfies the inequalities 3*binomial(k,2) <= n <= 3*binomial(k+1,2) of Theorem 1.1 in Malen and Roldán.
Proof: solving in k the above inequalities for n > 0, one gets that x - 1 <= k <= x, where x = (3 + sqrt(3*(3+8*n)))/6. Since 3*(3+8*n) is never a perfect square, it follows that x is not an integer and k = floor(x). QED.
LINKS
Greg Malen and Érika Roldán, Polyiamonds Attaining Extremal Topological Properties, arXiv:1906.08447 [math.CO], 2019.
FORMULA
a(n) = 3*(n + k(n)) + 1 + ceiling(2*n/k(n)), where k(n) = floor((3 + sqrt(3*(3+8*n)))/6).
MAPLE
k:=n->floor((3+sqrt(3*(3+8*n)))/6): a:=n->3*(n+k(n))+1+ceil(2*n/k(n)): seq(a(n), n = 1 .. 58)
MATHEMATICA
k[n_]:=Floor[(3+Sqrt[3*(3+8n)])/6]; a[n_]:=3(n+k[n])+1+Ceiling[2n/k[n]]; Array[a, 58]
CROSSREFS
Sequence in context: A328246 A244466 A171123 * A302056 A173792 A332588
KEYWORD
nonn
AUTHOR
Stefano Spezia, Sep 29 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 19:00 EDT 2024. Contains 372720 sequences. (Running on oeis4.)