The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327580 Triangle read by rows: T(n,k) = Sum_{1<=j*k<=n} cos(Pi*(j*k-1)/2). 1
1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 1, 0, -1, 0, 1, 1, 0, -1, 0, 1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
a(n) is a (-1, 0, 1)-valued sequence.
The identity Sum_{k=1..n} T(n,k) mu(k)=1 holds for every n. The function mu is the Moebius function and T(n,k) is entry k of row n in the triangular array.
T(n,2k) = 0 for all k.
T(n,k) is 4-periodic when k > n/3.
T(n,*) gives the transpose of the n-th truncation of Dirichlet convolution by (1,1,1,...) applied to the periodic sequence (1,0,-1,0,...).
LINKS
Jeffery Kline, Table of n, a(n) for n = 1..4950 (Rows n = 1..99 of triangle, flattened)
Jeffery Kline, Unital sums of the Moebius and Mertens functions, Journal of Integer Sequences, 23 (2020), Article 20.8.1.
EXAMPLE
The first 20 rows of the triangle:
1;
1, 0;
0, 0, -1;
0, 0, -1, 0;
1, 0, -1, 0, 1;
1, 0, -1, 0, 1, 0;
0, 0, -1, 0, 1, 0, -1;
0, 0, -1, 0, 1, 0, -1, 0;
1, 0, 0, 0, 1, 0, -1, 0, 1;
1, 0, 0, 0, 1, 0, -1, 0, 1, 0;
0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1;
0, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0;
1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1;
1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0;
0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1;
0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0;
1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1;
1, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0;
0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1;
0, 0, -1, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0;
...
MAPLE
T:= (n, k)-> add(cos(Pi*(j*k-1)/2), j=1..n/k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Sep 29 2019
PROG
(Python)
import numpy as np
for n in range(1, 21):
A = [ sum([ np.cos(np.pi * (j*k-1)/2) for k in range(1, n//j+1)])
for j in range(1, n+1) ]
print(np.array(np.rint(A), dtype=int))
(Python)
import numpy as np
m, maxn = 1, 1000
D = np.zeros((maxn, maxn), dtype=int);
for j in range(maxn): D[j::j+1, j]=1
cm = np.zeros(maxn, dtype=int); cm[ ::4*m] = 1; cm[2*m::4*m] = -1
for n in range(1, 21): print( D[:n, :n].T.dot(cm[:n]))
CROSSREFS
Sequence in context: A143064 A185124 A185125 * A163811 A163817 A266837
KEYWORD
sign,tabl
AUTHOR
Jeffery Kline, Sep 17 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 06:19 EDT 2024. Contains 372703 sequences. (Running on oeis4.)