The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327330 "Concave pentagon" toothpick sequence (see Comments for precise definition). 4
0, 1, 3, 7, 11, 15, 23, 33, 41, 45, 53, 63, 75, 89, 111, 133, 149, 153, 161, 171, 183, 197, 219, 241, 261, 275, 299, 327, 361, 403, 463, 511, 547, 551, 559, 569, 581, 595, 617, 639, 659, 673, 697, 725, 759, 801, 861, 909, 949, 967, 995, 1029, 1075, 1125, 1183, 1233, 1281, 1321, 1389, 1465, 1549, 1657 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
This arises from a hybrid cellular automaton on a triangular grid formed of I-toothpicks (A160164) and V-toothpicks (A161206).
The surprising fact is that after 2^k stages the structure looks like a concave pentagon, which is formed essentially by an equilateral triangle (E) surrounded by two quadrilaterals (Q1 and Q2), both with their largest sides in vertical position, as shown below:
.
* *
* * * *
* * * *
* * *
* Q1 * Q2 *
* * * *
* * * *
* * * *
* * * *
* * E * *
* * * *
* * * *
** **
* * * * * * * * * *
.
Note that for n >> 1 both quadrilaterals look like right triangles.
Every polygon has a slight resemblance to Sierpinsky's triangle, but here the structure is much more complex.
For the construction of the sequence the rules are as follows:
On the infinite triangular grid at stage 0 there are no toothpicks, so a(0) = 0.
At stage 1 we place an I-toothpick formed of two single toothpicks in vertical position, so a(1) = 1.
For the next n generation we have that:
If n is even then at every free end of the structure we add a V-toothpick, formed of two single toothpicks, with its central vertex directed upward, like a gable roof.
If n is odd then we add I-toothpicks in vertical position (see the example).
a(n) gives the total number of I-toothpicks and V-toothpicks in the structure after the n-th stage.
A327331 (the first differences) gives the number of elements added at the n-th stage.
2*a(n) gives the total number of single toothpicks of length 1 after the n-th stage.
The structure contains many kinds of polygonal regions, for example: triangles, trapezes, parallelograms, regular hexagons, concave hexagons, concave decagons, concave 12-gons, concave 18-gons, concave 20-gons, and other polygons.
The structure is almost identical to the structure of A327332, but a little larger at the upper edge.
The behavior seems to suggest that this sequence can be calculated with a formula, in the same way as A139250, but that is only a conjecture.
The "word" of this cellular automaton is "ab". For more information about the word of cellular automata see A296612.
For another version, very similar, starting with a V-toothpick, see A327332, which it appears that shares infinitely many terms with this sequence.
LINKS
FORMULA
Conjecture: a(2^k) = A327332(2^k), k >= 0.
EXAMPLE
Illustration of initial terms:
.
| /|\ |/|\|
| | | | |
/ \ |/ \|
| |
n : 0 1 2 3
a(n): 0 1 3 7
After three generations there are five I-toothpicks and two V-toothpicks in the structure, so a(3) = 5 + 2 = 7 (note that in total there are 2*a(3) = 2*7 = 14 single toothpicks of length 1).
CROSSREFS
First differs from A231348 at a(11).
Cf. A047999, A139250 (normal toothpicks), A160164 (I-toothpicks), A160722 (a concave pentagon with triangular cells), A161206 (V-toothpicks), A296612, A323641, A323642, A327331 (first differences), A327332 (another version).
For other hybrid cellular automata, see A194270, A194700, A220500, A289840, A290220, A294020, A294962, A294980, A299770, A323646, A323650.
Sequence in context: A172306 A309274 A112714 * A231348 A194444 A220524
KEYWORD
nonn
AUTHOR
Omar E. Pol, Sep 01 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 14:34 EDT 2024. Contains 372540 sequences. (Running on oeis4.)