The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327085 Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional simplex using up to k colors. 13

%I #21 Jun 09 2021 02:31:38

%S 0,0,0,0,0,0,0,1,1,0,0,4,21,6,0,0,10,140,405,28,0,0,20,575,7904,17154,

%T 252,0,0,35,1785,76880,1415648,1920375,4726,0,0,56,4606,486522,

%U 41453650,855834880,547375212,150324,0

%N Array read by descending antidiagonals: A(n,k) is the number of chiral pairs of colorings of the edges of a regular n-dimensional simplex using up to k colors.

%C An n-dimensional simplex has n+1 vertices and (n+1)*n/2 edges. For n=1, the figure is a line segment with one edge. For n-2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with six edges. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. The chiral colorings of its edges come in pairs, each the reflection of the other.

%C A(n,k) is also the number of chiral pairs of colorings of (n-2)-dimensional regular simplices in an n-dimensional simplex using up to k colors. Thus, A(2,k) is also the number of chiral pairs of colorings of the vertices (0-dimensional simplices) of an equilateral triangle.

%H Robert A. Russell, <a href="/A327085/b327085.txt">Table of n, a(n) for n = 1..325</a> First 25 antidiagonals.

%H Harald Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/html/book/hyl00_42.html">The cycle type of the induced action on 2-subsets</a>

%H E. M. Palmer and R. W. Robinson, <a href="https://projecteuclid.org/euclid.acta/1485889789">Enumeration under two representations of the wreath product</a>, Acta Math., 131 (1973), 123-143.

%F The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition.

%F A(n,k) = Sum_{j=1..(n+1)*n/2} A327089(n,j) * binomial(k,j).

%F A(n,k) = A327083(n,k) - A327084(n,k) = (A327083(n,k) - A327086(n,k)) / 2 = A327084(n,k) - A327086(n,k).

%e Array begins with A(1,1):

%e 0 0 0 0 0 0 0 0 0 0 0 ...

%e 0 0 1 4 10 20 35 56 84 120 165 ...

%e 0 1 21 140 575 1785 4606 10416 21330 40425 71995 ...

%e 0 6 405 7904 76880 486522 2300305 8806336 28725192 82626270 214744629 ...

%e ...

%e For A(2,3) = 1, the chiral pair is ABC-ACB.

%t CycleX[{2}] = {{1,1}}; (* cycle index for permutation with given cycle structure *)

%t CycleX[{n_Integer}] := CycleX[n] = If[EvenQ[n], {{n/2,1}, {n,(n-2)/2}}, {{n,(n-1)/2}}]

%t compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i, 1]] == s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s,i], Null]]; s)

%t CycleX[p_List] := CycleX[p] = compress[Join[CycleX[Drop[p, -1]], If[Last[p] > 1, CycleX[{Last[p]}], ## &[]], If[# == Last[p], {#, Last[p]}, {LCM[#, Last[p]], GCD[#, Last[p]]}] & /@ Drop[p, -1]]]

%t pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)

%t row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#,2]]], 1, -1] pc[#] j^Total[CycleX[#]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]

%t array[n_, k_] := row[n] /. j -> k

%t Table[array[n,d-n+1], {d,1,10}, {n,1,d}] // Flatten

%t (* Using Fripertinger's exponent per Andrew Howroyd's code in A063841: *)

%t pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))]

%t ex[v_] := Sum[GCD[v[[i]], v[[j]]], {i,2,Length[v]}, {j,i-1}] + Total[Quotient[v,2]]

%t array[n_,k_] := Total[If[EvenQ[Total[1-Mod[#,2]]],1,-1] pc[#]k^ex[#] &/@ IntegerPartitions[n+1]]/(n+1)!

%t Table[array[n,d-n+1], {d,10}, {n,d}] // Flatten

%Y Cf. A327083 (oriented), A327084 (unoriented), A327086 (achiral), A327089 (exactly k colors), A325000(n,k-n) (vertices, facets), A337885 (faces, peaks), A337409 (orthotope edges, orthoplex ridges), A337413 (orthoplex edges, orthotope ridges).

%Y Rows 1-4 are A000004, A000292(n-2), A337899, A331352.

%K nonn,tabl

%O 1,12

%A _Robert A. Russell_, Aug 19 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 06:48 EDT 2024. Contains 372743 sequences. (Running on oeis4.)