The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325012 Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors. 13

%I #29 Jun 15 2019 14:43:14

%S 1,4,1,9,6,1,16,24,23,1,25,70,333,496,1,36,165,2916,230076,2275974,1,

%T 49,336,16725,22456756,965227578201,800648638402240,1,64,616,70911,

%U 795467350,9607713956430560,149031415906337877339236058,1054942853799126580390222487977120,1

%N Array read by descending antidiagonals: A(n,k) is the number of oriented colorings of the facets of a regular n-dimensional orthoplex using up to k colors.

%C Also called cross polytope and hyperoctahedron. For n=1, the figure is a line segment with two vertices. For n=2 the figure is a square with four edges. For n=3 the figure is an octahedron with eight triangular faces. For n=4, the figure is a 16-cell with sixteen tetrahedral facets. The Schläfli symbol, {3,...,3,4}, of the regular n-dimensional orthoplex (n>1) consists of n-2 threes followed by a four. Each of its 2^n facets is an (n-1)-dimensional simplex. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two.

%C Also the number of oriented colorings of the vertices of a regular n-dimensional orthotope (cube) using up to k colors.

%H Robert A. Russell, <a href="/A325012/b325012.txt">Table of n, a(n) for n = 1..78</a>

%H E. M. Palmer and R. W. Robinson, <a href="https://projecteuclid.org/euclid.acta/1485889789">Enumeration under two representations of the wreath product</a>, Acta Math., 131 (1973), 123-143.

%F The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n. It then determines the number of permutations for each partition and the cycle index for each partition.

%F A(n,k) = A325013(n,k) + A325014(n,k) = 2*A325013(n,k) - A325015(n,k) = 2*A325014(n,k) + A325015(n,k).

%F A(n,k) = Sum_{j=1..2^n} A325016(n,j) * binomial(k,j).

%e Array begins with A(1,1):

%e 1 4 9 16 25 36 49 64 ...

%e 1 6 24 70 165 336 616 1044 ...

%e 1 23 333 2916 16725 70911 241913 701968 ...

%e 1 496 230076 22456756 795467350 14697611496 173107727191 1466088119056 ...

%e For A(1,2) = 4, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses one color for each vertex.

%t a48[n_] := a48[n] = DivisorSum[NestWhile[#/2&,n,EvenQ], MoebiusMu[#]2^(n/#)&]/(2n); (* A000048 *)

%t a37[n_] := a37[n] = DivisorSum[n,MoebiusMu[n/#]2^#&]/n; (* A001037 *)

%t CI0[{n_Integer}] := CI0[{n}] = CI[Transpose[If[EvenQ[n], p2 = IntegerExponent[n, 2]; sub = Divisors[n/2^p2]; {2^(p2+1) sub, a48 /@ (2^p2 sub) }, sub = Divisors[n]; {sub, a37 /@ sub}]]] 2^(n-1);(* even perm. *)

%t CI1[{n_Integer}] := CI1[{n}] = CI[sub = Divisors[n]; Transpose[If[EvenQ[n], {sub, a37 /@ sub}, {2 sub, a48 /@ sub}]]] 2^(n-1); (* odd perm. *)

%t compress[x : {{_, _} ...}] := (s = Sort[x]; For[i = Length[s], i > 1, i -= 1, If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]] += s[[i,2]]; s = Delete[s, i], Null]]; s)

%t cix[{a_, b_}, {c_, d_}] := {LCM[a, c], (a b c d)/LCM[a, c]};

%t Unprotect[Times]; Times[CI[a_List], CI[b_List]] := (* combine *) CI[compress[Flatten[Outer[cix, a, b, 1], 1]]]; Protect[Times];

%t CI0[p_List] := CI0[p] = Expand[CI0[Drop[p, -1]] CI0[{Last[p]}] + CI1[Drop[p, -1]] CI1[{Last[p]}]]

%t CI1[p_List] := CI1[p] = Expand[CI0[Drop[p, -1]] CI1[{Last[p]}] + CI1[Drop[p, -1]] CI0[{Last[p]}]]

%t pc[p_List] := Module[{ci,mb},mb = DeleteDuplicates[p]; ci = Count[p, #] & /@ mb; n!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)

%t row[n_Integer] := row[n] = Factor[(Total[(CI0[#] pc[#]) & /@ IntegerPartitions[n]])/(n! 2^(n - 1))] /. CI[l_List] :> j^(Total[l][[2]])

%t array[n_, k_] := row[n] /. j -> k

%t Table[array[n, d-n+1], {d, 1, 10}, {n, 1, d}] // Flatten

%Y Cf. A325013 (unoriented), A325014 (chiral), A325015 (achiral), A325016 (exactly k colors).

%Y Other n-dimensional polytopes: A324999 (simplex), A325004 (orthotope).

%Y Rows 1-3 are A000290, A006528, A000543; column 2 is A237748.

%Y Cf. A000048, A001037.

%K nonn,tabl,easy

%O 1,2

%A _Robert A. Russell_, May 27 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:40 EDT 2024. Contains 372763 sequences. (Running on oeis4.)