The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321331 Triangle read by rows: T(n, k) = (k+1)*S2(n+1, k+1), for n >= k >= 0, and S2 = A048993 (Stirling2). 3
1, 1, 2, 1, 6, 3, 1, 14, 18, 4, 1, 30, 75, 40, 5, 1, 62, 270, 260, 75, 6, 1, 126, 903, 1400, 700, 126, 7, 1, 254, 2898, 6804, 5250, 1596, 196, 8, 1, 510, 9075, 31080, 34755, 15876, 3234, 288, 9, 1, 1022, 27990, 136420, 212625, 136962, 41160, 6000, 405, 10, 1, 2046, 85503, 583000, 1233650, 1076922, 447909, 95040, 10395, 550, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
This lower triangular matrix T is the inverse of the triangular matrix with elements Narumi[-1](n,m)/(m+1) = S1(n+1, m+1)/(n+1), with the Narumi triangle for parameter a = -1, and S1 = A048994 (Stirling1), i.e., Sum_{k=m..n} T(n, k) * S1(k+1, m+1)/(k+1) = delta_{n,m} (Kronecker symbol).
This triangle arises from the inverse of the rational Sheffer matrix Narumi[-1] = (log(1+x)/x, log(1+x) (such special Sheffer matrices (g(x), x*g(x)) define elements of the Narumi subgroup). The inverse matrix is (Narumi[-1])^(-1) = ((exp(x) - 1)/x, exp(x) - 1).
In order to have an integer matrix one takes T(n, k) := (n+1)*(Narumi[-1])^(-1)(n, k) = (k+1)*S2(n+1, k+1). The connection to S2 = A048993 results from the general relation between each Narumi-type matrix N = (g(x), x*g(x)) and its associated Sheffer matrix J = (1, x*g(x)) (this is of the Jabotinsky-type), i.e., N(n, m) = (m+1)*J(n+1, m+1)/(n+1), or with the row polynomials Npol(n, x) = (1/(n+1))*(d/dx)Jpol(n+1, x).
The signed triangle (-1)^(n-k)*A028421(n, k) (with upper diagonals filled with zeros) gives the integer matrix Nscaled with elements (n+1)*Narumi[-1](n,k). This inverse of Nscaled has the rational elements (Narumi[-1])^(-1)(k, m)/(m+1) = (1/(k+1))*S2(k+1, m+1).
The a- and z- sequence for the Sheffer matrix (Narumi[-1])^(-1) (see A006232 for a link on these sequences) have e.g.f.s Ea(x) = x/log(1 + x) and Ez(x) = 1/log(1 + x) - 1/x, hence a(n) = A006232(n)/A006233(n) and z(n) = A006232(n+1)/A075178(n), for n >= 0. This leads to the recurrence for T(n, k) given in the formula section.
The Boas-Buck-type column recurrence (see the link, also for references) uses the sequence with o.g.f. GBB(y) = exp(y)/(exp(y) - 1) - 1/y, with BB(n) = (-1)^(n+1)*A060054(n+1 ) / A227830(n+1), for n >= 1. For the recurrence see the formula section.
The Meixner-type identity (see the Meixner link) for the row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, derived from the one for the Narumi[-1]^(-1) row polynomials is Sum_{k=1..n} (-1)^{k+1}*(1/k)*(d/dx)^k R(n, x)/(n+1) = R(n-1, x), for n >= 1, and R(0, x) = 1. Here d/dx is a differentiation operator.
The Roman-type recurrence for the row polynomials (see the reference, Corollary 3.7.2. p. 50) becomes, with the z-sequence from above: R(n, x) = ((n+1)/n)*{(x + 1/2)*1 + (x - z(1))*d/dx - Sum_{k=2..n-1} (1/k!)*z(k)*(d/dx)^k}*R(n-1, x), for n >= 1, and R(0, x) = 1.
The triangle is the exponential Riordan square (cf. A321620) of exp(x)-1 with an additional main diagonal of zeros. - Peter Luschny, Jan 03 2019
REFERENCES
Steven Roman, The umbral calculus, Academic Press, 1984.
LINKS
FORMULA
T(n, k) = (k+1)*A048993(n+1, k+1), with A048993 = Stirling2, for n >= k >= 0, and 0 otherwise.
T(n, k) = (n+1)*(Narumi[a=-1])^(-1)(n, k), with the Narumi[a=-1] matrix with entries (-1)^(n-k)*A028421(n, k)/(n+1).
E.g.f. for column k sequence: E(k, x) = (x*d/dx + 1)*EN(k, x), where EN(k, x) = exp(x) - 1)^(k+1)/(x*k!) is the e.g.f. for the (Narumi[a=-1])^(-1) columns. Hence E(k, x) = exp(x)*(exp(x) - 1)*(k+1)/k!, for k >= 0.
E.g.f. for (ordinary) row polynomials R(n, x): Epol(z, x) = exp(z)*exp(x*(exp(z) - 1))*(1 + x*(exp(z) - 1)).
Recurrence (from Stirling2): T(n, k) = 0 for n < k; T(n, 0) = (k + 1)*T(n-1, k), for n <= 1, T(0, 0) = 1; T(n, k) = (k+1)*(T(n-1, k) + T(n-1, k-1)/k), for n >= 1, k >= 1.
Recurrence (from a- and z-sequence, see above): a = {1, 1/2, -1/6, 1/4, -19/30, 9/4, ...}, z = {1/2, -1/12, 1/12, -19/120, 9/20, -863/504, ...}.
T(n, k) = 0, for n < k; T(n, 0) = (n+1)*Sum_{j=0..n-1} z(j)*T(n-1, j), for n >= 1, with T(0, 0) = 1; T(n, k) = ((n+1)/k)*Sum_{j=0..n-m} binomial(k-1+j, j)*a(j)*T(n-1, k-1+j).
Recurrence for column k, from the Boas-Buck-type sequence BB(n) = (-1)^(n+1)*A060054(n+1)/A227830(n+1), for n >= 0; BB = {1/2, 1/12, 0, -1/720, 0, 1/30240, 0, -1/1209600, ...}: T(n, k) = 0, for n < k; T(n, n) = n+1, for n >= 0; T(n, k) = ((n+1)!*(k+1)/(n-k))*Sum_{j=k..n-1} (1/(j+1)!)*BB(n-(j+1))*T(j, k), for n >= 0 and k = 0, 1, ..., n-1.
T(n, k) = Stirling2(n+2, k+1) - Stirling2(n+1, k). - Peter Luschny, May 26 2020
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------------------------
0: 1
1: 1 2
2: 1 6 3
3: 1 14 18 4
4: 1 30 75 40 5
5: 1 62 270 260 75 6
6: 1 126 903 1400 700 126 7
7: 1 254 2898 6804 5250 1596 196 8
8: 1 510 9075 31080 34755 15876 3234 288 9
9: 1 1022 27990 136420 212625 136962 41160 6000 405 10
10: 1 2046 85503 583000 1233650 1076922 447909 95040 10395 550 11
...
Recurrence (from Stirling2): T(4, 2) = 3*(T(3, 2) + T(3, 1)/2) = 3*(18 + 14/2) = 75.
Recurrence (from a- and z-sequence): T(4, 0) = 5*((1/2)*T(3, 0) - (1/12)*T(3, 1) + (1/12)*T(3, 2) - (19/120)*T(3, 3)) = 5*(1/2 - 14/12 + 18/12 - 4*19/120) = 1; T(4,2) = (5/2)*(1*1*T(3, 1) + 2*(1/2)*T(3, 2) + 3*(-1/6)* T(3, 3)) = (5/2)*(14 + 18 - 2) = 75.
Recurrence for column k=2 (Boas-Buck-type): T(4, 2) = (5!*3/2)*((1/3!)*(1/12)*T(2, 2) + (1/4!)*(1/2)*T(3, 2)) = (5!*3/2)*((1/72)*3 + (1/48)*18) = 75.
Meixner identity for the row polynomials, for n = 3: {d/dx - (1/2)*(d/dx)^2 + (1/3)*(d/dx)^3)}*R(3, x)/4) = ((14 - 36/2 + 24/3) + (36 - 24/2)*x + 12*x^2)/4 = (1 + 6*x + 3*x^2) = R(2, x).
Roman type recurrence for row polynomials: R(n, 3) = (3/2)*{(x + 1/12)*(1 + 6*x + 3*x^2) + (x - (-1/2))*(6 + 6*x) - (1/2!)*(1/12)*6} = 1 + 14*x + 18*x^2 + 4*x^3.
MAPLE
T:=(n, k)->(k+1)*Stirling2(n+1, k+1): seq(seq(T(n, k), k=0..n), n=0..10); # Muniru A Asiru, Dec 03 2018
MATHEMATICA
T[n_, k_] := (k+1) * StirlingS2[n+1, k+1]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Dec 03 2018 *)
PROG
(GAP) Flat(List([0..10], n->List([0..n], k->(k+1)*Stirling2(n+1, k+1)))); # Muniru A Asiru, Dec 03 2018
(Sage) # uses[riordan_square from A321620]
riordan_square(exp(x) - 1, 10, True) # Peter Luschny, Jan 03 2019
(PARI) T(n, k) = (k+1)*stirling(n+1, k+1, 2) \\ Thomas Scheuerle, Nov 10 2023
CROSSREFS
Sequence in context: A132813 A034898 A059300 * A046803 A280789 A121468
KEYWORD
nonn,tabl,easy
AUTHOR
Wolfdieter Lang, Dec 03 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 09:31 EDT 2024. Contains 373119 sequences. (Running on oeis4.)