The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321090 Sequence {a(n), n>=0} satisfying the continued fraction relation: if z = [a(0) + 1; a(1) + 1, a(2) + 1, a(3) + 1, ..., a(n) + 1, ...], then 3*z = [a(0) + 9; a(1) + 11, a(2) + 11, a(3) + 11, ..., a(n) + 11, ...]. 11

%I #81 Nov 07 2018 09:33:07

%S 2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,

%T 1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,

%U 0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1

%N Sequence {a(n), n>=0} satisfying the continued fraction relation: if z = [a(0) + 1; a(1) + 1, a(2) + 1, a(3) + 1, ..., a(n) + 1, ...], then 3*z = [a(0) + 9; a(1) + 11, a(2) + 11, a(3) + 11, ..., a(n) + 11, ...].

%C a(n) = 2 - A321100(n) for n >= 0.

%C a(3*n+1) = A189706(n+1) for n >= 0.

%C A321091(n) = a(n) + 1 for n >= 1.

%C A321093(n) = 2*a(n) + 1 for n >= 1.

%C A321095(n) = 3*a(n) + 1 for n >= 1.

%C A321097(n) = 4*a(n) + 1 for n >= 1.

%H Paul D. Hanna, <a href="/A321090/b321090.txt">Table of n, a(n) for n = 0..10000</a>

%F CONTINUED FRACTION RELATION - this sequence {a(n), n>=0} satisfies:

%F (1) If X(k,n) = [k*a(0) + n; k*a(1) + n, k*a(2) + n, k*a(3) + n, ...],

%F then (n^2 + k*n + 1)*X(k,n) = [k*a(0) + m-k-n; k*a(1) + m, k*a(2) + m, k*a(3) + m, ...], where m = n^3 + 3*k*n^2 + (2*k^2 + 3)*n + 2*k, for n >= 0, k >= 0.

%F (2) If y(n) = [a(0) + n; a(1) + n, a(2) + n, a(3) + n, ...]

%F then (n^2 + n + 1)*y(n) = [a(0) + m-n-1; a(1) + m, a(2) + m, a(3) + m, ...], where m = n^3 + 3*n^2 + 5*n + 2, for n >= 0 (note special case at n=0).

%F (3) If z(n) = [n*a(0) + 1; n*a(1) + 1, n*a(2) + 1, n*a(3) + 1, ...],

%F then (n + 2)*z(n) = [n*a(0) + m-n-1; n*a(1) + m, n*a(2) + m, n*a(3) + m, ...], where m = 2*n^2 + 5*n + 4, for n >= 0.

%F FORMULA FOR TERMS: for n >= 0,

%F (1) a(3*n) = 2,

%F (2) a(3*n+2) = 1 - a(3*n+1),

%F (3) a(9*n+1) = 0,

%F (4) a(9*n+7) = 1,

%F (5) a(9*n+4) = 1 - a(3*n+1).

%e ILLUSTRATION 1 OF CONTINUED FRACTION PROPERTY.

%e Define y(n) = [a(0) + n; a(1) + n, a(2) + n, a(3) + n, ...]

%e then (n^2 + n + 1)*y(n) = [a(0) + m-n-1; a(1) + m, a(2) + m, a(3) + m, ...], where m = n^3 + 3*n^2 + 5*n + 2, for n >= 0 (note special case at n=0).

%e EXAMPLES of constants y(n) and respective continued fractions for initial n are as follows.

%e CASE n = 0.

%e y(0) = 3.43303149449604468606582652632993270180568661743523717776168...

%e Allowing for zero partial denominators in the continued fraction,

%e y(0) = [2; 0, 1, 2, 1, 0, 2, 1, 0, 2, 0, 1, 2, 0, ..., a(n) + 0, ...];

%e the simple continued fraction expansion of y(0) rewrites this as

%e y(0) = [3; 2, 3, 4, 3, 2, 4, 3, 2, 4, 2, 3, 4, 2, ..., a(n) + 2, ...].

%e CASE n = 1.

%e y(1) = 3.69674328597002790903797135061489969596768903498266397449760...

%e y(1) = [3; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, ..., a(n) + 1, ...],

%e 3*y(1) = [11; 11, 12, 13, 12, 11, 13, 12, 11, 13, ..., a(n) + 11, ...].

%e CASE n = 2.

%e y(2) = 4.43303149449604468606582652632993270180568661743523717776168...

%e y(2) = [4; 2, 3, 4, 3, 2, 4, 3, 2, 4, 2, 3, 4, 2, ..., a(n) + 2, ...],

%e 7*y(2) = [31; 32, 33, 34, 33, 32, 34, 33, 32, 34, ..., a(n) + 32, ...].

%e CASE n = 3.

%e y(3) = 5.30877551945535750122355554493187782342126930062870320137262...

%e y(3) = [5; 3, 4, 5, 4, 3, 5, 4, 3, 5, 3, 4, 5, 3, ..., a(n) + 3, ...],

%e 13*y(3) = [69; 71, 72, 73, 72, 71, 73, 72, 71, 73, ..., a(n) + 71, ...].

%e CASE n = 4.

%e y(4) = 6.23845058448006611462883411378241316742379547477181191240204...

%e y(4) = [6; 4, 5, 6, 5, 4, 6, 5, 4, 6, 4, 5, 6, 4, ..., a(n) + 4, ...],

%e 21*y(4) = [131; 134, 135, 136, 135, 134, 136, 135, ..., a(n) + 134, ...].

%e etc.

%e ILLUSTRATION 2 OF CONTINUED FRACTION PROPERTY.

%e Define z(n) = [n*a(0) + 1; n*a(1) + 1, n*a(2) + 1, n*a(3) + 1, ...],

%e then (n + 2)*z(n) = [n*a(0) + m-n-1; n*a(1) + m, n*a(2) + m, n*a(3) + m, ...], where m = 2*n^2 + 5*n + 4, for n >= 0;

%e EXAMPLES of constants z(n) and respective continued fractions for initial n are as follows.

%e CASE n = 0.

%e z(0) = 1.6180339887498948482045868343... = (1 + sqrt(5))/2 ;

%e z(0) = [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., 0*a(n) + 1, ...];

%e 2*z(0) = [3; 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ..., 0*a(n) + 4, ...].

%e CASE n = 1.

%e z(1) = 3.696743285970027909037971350614899695967689034... (A321092 - 1)

%e z(1) = [3; 1, 2, 3, 2, 1, 3, 2, 1, 3, 1, 2, 3, 1, ..., 1*a(n) + 1, ...];

%e 3*z(1) = [11; 11, 12, 13, 12, 11, 13, 12, 11, 13, ..., 1*a(n) + 11, ...].

%e CASE n = 2.

%e z(2) = 5.761342189260052577009778722181649926352515102... (A321094 - 1)

%e z(2) = [5; 1, 3, 5, 3, 1, 5, 3, 1, 5, 1, 3, 5, 1, ..., 2*a(n) + 1, ...];

%e 4*z(2) = [23; 22, 24, 26, 24, 22, 26, 24, 22, 26, ..., 2*a(n) + 22, ...].

%e CASE n = 3.

%e z(3) = 7.805401757688663373476939995437639876411562871... (A321096 - 1)

%e z(3) = [7; 1, 4, 7, 4, 1, 7, 4, 1, 7, 1, 4, 7, 1, ..., 3*a(n) + 1, ...];

%e 5*z(3) = [39; 37, 40, 43, 40, 37, 43, 40, 37, 43, ..., 3*a(n) + 37, ...].

%e CASE n = 4.

%e z(4) = 9.836308638532504943187035876427127876597685953... (A321098 - 1)

%e z(4) = [9; 1, 5, 9, 5, 1, 9, 5, 1, 9, 1, 5, 9, 1, ..., 4*a(n) + 1, ...];

%e 6*z(4) = [59; 56, 60, 64, 60, 56, 64, 60, 56, 64, ..., 4*a(n) + 56, ...].

%e etc.

%e EXTENDED TERMS.

%e The initial 1020 terms of this sequence are as follows.

%e A = [2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,

%e 2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,

%e 2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,

%e 2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,

%e 2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,

%e 2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,

%e 2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,

%e 2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,

%e 2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,

%e 2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,

%e 2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,

%e 2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,

%e 2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,

%e 2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,

%e 2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,

%e 2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,

%e 2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,

%e 2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,

%e 2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,

%e 2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,

%e 2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,

%e 2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,

%e 2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,

%e 2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,

%e 2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,

%e 2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,

%e 2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,

%e 2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,

%e 2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,

%e 2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,

%e 2,0,1,2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,

%e 2,0,1,2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,

%e 2,1,0,2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,0,1,2,1,0,

%e 2,0,1,2,0,1,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1,2,1,0,2,1,0,2,0,1, ...].

%e ...

%o (PARI) /* Generate over 5000 terms */

%o {CF=[4]; for(i=1,8, M = contfracpnqn( CF + vector(#CF,i,10) ); z = (1/3)*M[1,1]/M[2,1]; CF = contfrac(z) )}

%o for(n=0,200,print1(CF[n+1]-1-0^n,", "))

%o (PARI) /* Using formula for individual terms */

%o {a(n) = if(n%3==0, 2,

%o if(n%3==2, 1 - a(n-1),

%o if(n%9==1, 0,

%o if(n%9==7, 1,

%o if(n%9==4, 1 - a((n-1)/3) )))))}

%o for(n=0,200,print1(a(n),","))

%Y Cf. A321100, A321091, A321092, A321093, A321094, A321095, A321096, A321097, A321098.

%K nonn

%O 0,1

%A _Paul D. Hanna_, Oct 27 2018

%E Revised example and comments sections. - _Paul D. Hanna_, Nov 03 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 11:57 EDT 2024. Contains 372763 sequences. (Running on oeis4.)