The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320660 Number of business cards required to build an origami level n Jerusalem cube. 0

%I #17 Mar 06 2022 10:00:48

%S 12,72,672,6048,55488,511872,4738560,43943424,407890944,3787941888,

%T 35186122752,326885842944,3037038034944,28217571901440,

%U 262178452930560,2436006721486848,22634041833160704,210303674768424960,1954034324430913536,18155901427591938048

%N Number of business cards required to build an origami level n Jerusalem cube.

%C The actual Jerusalem cube fractal cannot be built using a simple integer grid. However, one can create an approximate one by choosing the cube side length to be a Pell number (see link).

%C In practice, the first two terms represent the level 0 because they both consist of cubes (1 X 1 X 1 and 2 X 2 X 2, respectively). The "cross" shape appears at index 2, which is usually considered as the first iteration (for example, the "hole" shape in the Menger Sponge is visible at level 1).

%C The limit of a(n+1)/a(n) is equal to 2*(2+sqrt(7)) as n approaches infinity.

%D Eric Baird, L'art fractal, Tangente 150 (2013), 45.

%D Thomas Hull, Project Origami: Activities for Exploring Mathematics, A K Peters/CRC Press, 2006.

%H Eric Baird, <a href="http://alt-fractals.blogspot.com/2011/08/jerusalem-cube.html">The Jerusalem Cube</a>

%H Malachi B-J. Brown, <a href="http://www.spencerandbrown.com/mbb/origami/buscard/">Business Card Origami</a>

%H Robert Dickau, <a href="https://robertdickau.com/jerusalemcube.html">Cross Menger (Jerusalem) Cube Fractal</a>

%H Origami Resource Center, <a href="https://www.origami-resource-center.com/jerusalem-cube-fractal-level-1.html">Jerusalem Cube Fractal (Level 1)</a>

%H Franck Ramaharo, <a href="https://arxiv.org/abs/1801.00466">An approximate Jerusalem square whose side equals a Pell number</a>, arXiv:1801.00466 [math.CO], 2018.

%H Wikipedia, <a href="https://fr.wikipedia.org/wiki/Cube_de_J%C3%A9rusalem">Cube de Jérusalem</a> [In French]

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (12, -16, -80, -48)

%F a(n) = (3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n).

%F a(n) = 12*a(n-1) - 16*a(n-2) - 80*a(n-3) - 48*a(n-4), n > 4.

%F G.f.: 12*(1 - 6*x + 8*x^3)/((1-4*x-4*x^2)*(1-8*x-12*x^2)) .

%F E.g.f.: (3/14)*(7*exp((2 - 2*sqrt(2))*x) + 7*exp((2 + 2*sqrt(2))*x) + (21 - 5*sqrt(7))*exp((4 - 2*sqrt(7))*x) + (21 + 5*sqrt(7))*exp((4 + 2*sqrt(7))*x)).

%F a(n) = 3*( A084128(n) -2*A239549(n) +3*A239549(n+1) ). - _R. J. Mathar_, Mar 06 2022

%e a(2) = 672 because 456 business cards are needed for the squeleton and 216 more for the panels.

%t LinearRecurrence[{12, -16, -80, -48}, {12, 72, 672, 6048}, 20]

%o (Maxima) makelist((3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n), n, 0, 20), ratsimp;

%Y At the n-th level, the cube side length is A000129(n+1), the squeleton requires 6*A239549(n+1) business cards, and each face requires A057087(n) units for the panels.

%Y Cf. A212596 (Origami Menger sponge), A304960 (Origami Mosely snowflake sponge).

%K nonn,easy

%O 0,1

%A _Franck Maminirina Ramaharo_, Oct 18 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 05:11 EDT 2024. Contains 372758 sequences. (Running on oeis4.)