The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318792 Consider the numbers of the form k^2 + 1 = p*q, p, q primes, where each sum p + q is constant for all k in the set {k_1, k_2, ..., k_r} (A181177). The sequence lists the corresponding sums p + q. 0

%I #12 Oct 13 2019 18:04:38

%S 102,162,210,358,402,582,678,1042,1158,1170,1222,1350,1478,1638,1698,

%T 1798,1830,2082,2178,2338,2342,2502,2790,2898,3238,3282,3462,3602,

%U 3618,3858,3942,4038,4498,4518,4998,5202,5250,5510,5862,5922,6150,6342,6930,6978,7122

%N Consider the numbers of the form k^2 + 1 = p*q, p, q primes, where each sum p + q is constant for all k in the set {k_1, k_2, ..., k_r} (A181177). The sequence lists the corresponding sums p + q.

%C Or non-unique sums p + q corresponding to the semiprimes of the form k^2 + 1 = p*q.

%C Consider the array A(n,k) read by rows where the row n contains all the elements having the property that A(n,k)^2 + 1 is the product of two primes p(n,k) and q(n,k) with sum S(n,k) = p(n,k) + q(n,k) constant for all k in the set {k_1, k_2, ..., k_r} (see A181177). The sequence lists the numbers a(n) = S(n, k).

%C Property of the sequence:

%C We observe that a(n) == 2, 6 or 18 (mod 32) => a(n)^2 + 1 == 5 (mod 32).

%C The finite set of numbers q such that a(n)^2 + 1 == r1 or r2 (mod q) is {3, 5, 6, 9, 10, 12, 18, 20, 24, 36, 40, 48, 64, 72, 80, 96, 144, 160, 288} with the corresponding pairs of residues (r1, r2) = (1, 2), (0, 1), (1, 5, (1, 5), (1, 5), (1, 5), (1, 5), (1, 5), (5, 13), (1, 5), (5, 21), (5, 37), (5, 37), (5, 37), (5, 21), (5, 37), (5, 37), (5, 101) and (5, 37). For example, a(n)^2 + 1 == 5 or 37 (mod 288). The number 288 is the greatest possible value.

%C We observe that a(n)^4 + 1 == 17 (mod 256).

%C The following table gives the first 10 values of a(n) with the corresponding subsets {A(n,k)}, k = 1..N(n), where N(n) is the maximum number of elements of each subset.

%C +---+-----------------------------------------------------+------+-----+

%C | n | A(n,1) A(n,2) A(n,3) A(n,4) A(n,5) A(n,6)... | a(n) |N(n) |

%C +---+-----------------------------------------------------+------+-----+

%C | 1 | 22 34 46 50 | 102 | 4 |

%C | 2 | 28 44 76 | 162 | 3 |

%C | 3 | 80 100 | 210 | 2 |

%C | 4 | 42 114 | 358 | 2 |

%C | 5 | 104 136 | 402 | 2 |

%C | 6 | 86 254 266 274 | 582 | 4 |

%C | 7 | 58 106 154 194 286 334 | 678 | 6 |

%C | 8 | 324 456 504 516 | 1042 | 4 |

%C | 9 | 214 374 494 526 566 | 1158 | 5 |

%C |10 | 140 520 | 1170 | 2 |

%C +---+-----------------------------------------------------+------+-----+

%e a(1) = 102 because, for {A(1,k)} = {22, 34, 46, 50} we obtain:

%e 22^2 + 1 = 5*97 and 97 + 5 = 102;

%e 34^2 + 1 = 13*89 and 13 + 89 = 102;

%e 46^2 + 1 = 29*73 and 29 + 73 = 102;

%e 50^2 + 1 = 41*61 and 41 + 61 = 102.

%p nn:=10^4:

%p for n from 8 by 2 to nn do:

%p it:=0:

%p for k from 3 by 2 to n/2 do:

%p if k<n-k and isprime(k) and isprime(n-k)

%p and sqrt(k*(n-k)-1)=floor(sqrt(k*(n-k)-1))

%p then

%p it:=it+1:

%p else

%p fi:

%p od:

%p if it>1

%p then

%p printf(`%d, `,n):

%p else

%p fi:

%p od:

%t nmax=10000; p = Select[Range[nmax], PrimeQ]; Select[Range[nmax], Length[Select[ Sqrt[-1 + Times@@@IntegerPartitions[#, {2}, p]], IntegerQ]] > 1 &] (* _Amiram Eldar_, Dec 15 2018 *)

%Y Cf. A181177.

%K nonn

%O 1,1

%A _Michel Lagneau_, Dec 15 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 20:42 EDT 2024. Contains 373003 sequences. (Running on oeis4.)