The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A307251 Numbers k for which A319100(k) sets a new record. 1
1, 3, 7, 21, 56, 63, 168, 252, 504, 819, 2184, 3276, 6552, 15561, 32760, 62244, 124488, 482391, 622440, 1929564, 3859128, 17848467, 19295640, 71393868, 142787736, 713938680, 3069936324, 6139872648, 30699363240, 187266115764, 337692995640, 374532231528 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let b = A319100 and v(k, p) be the p-adic valuation of k. Note that:
- if k is an odd number, then b(2*k) = b(k), b(4*k) = 2*b(k), b(2^e*k) = 4*b(k) for e >= 3;
- if k is not divisible by 3, then b(3*k) = 2*b(k), b(3^e*k) = 6*b(k) for e >= 2;
- for all primes p > 3, if k is not divisible by p, then b(p^e*k) = b(p*k).
As a result, every term k of this sequence satisfies: v(k, 2) = 0, 2 or 3, v(k, 3) <= 2 and v(k, p) <= 1 for all primes p > 3.
All terms k such that v(k, 3) = 1 are k = 3, 21, 168 and 2184. Proof:
- if k has a prime factor q == 5 (mod 6) or v(k, 2) = 2 (let q = 4), then b(9/(3*q)*k) = 6*b(k/(3*q)) = (3/2)*b(k), but 9/(3*q) < 1;
- if k has a prime factor p == 1 (mod 6) and p >= 19, then b((9*5)/(3*p)*k) = b(k), but (9*5)/(3*p) < 1.
So all terms k such that v(k, 3) = 1 are of the form k = 3*8^e*7^f*13^g, where 0 <= e <= f <= 1, 0 <= g <= f <= 1, but note that 3*7*13 = 273 is not a term because b(252) = b(273).
It is easy to see that all the other terms are of the form F, where F(i,j) = Product_{s=1..i} (p_s)*Product_{t=1..j} (q_t), where p_1 = 7, p_2 = 9, p_s = A002476(s-1) for s >= 3; q_1 = 4, q_2 = 2, q_t = A007528(t-2) for t >= 3. This is because F(i,j) is the smallest number k such that v(k, 3) != 1 and that b(k) = 6^i*2^j. Other than 4, 28 and 2520, the number F(i,j) is a term if and only if for all i', j' such that F(i',j') < F(i,j) we have 6^i'*2^j' < 6^i*2^j. (Note that 4, 28 and 2520 are of the form F and they satisfy this but they are not terms.)
Equivalently, a number k other than 3, 21, 168, 2184 and 4, 28, 2520 is a term if and only if k is of the form F and: (a) for any u, v such that u <= i and 6^u < 2^v, Product_{s=i-u+1..i} (p_s) < Product_{t=j+1..j+v} (q_t); (b) for any u, v such that v <= j and 6^u > 2^v, Product_{s=i+1..i+u} (p_s) > Product_{t=j-v+1..j} (q_t).
Specially, if a number k other than 3, 21, 168, 2184 and 4, 28, 2520 is a term, then k is of the form F and: (a') p_i < (q_(j+1))*(q_(j+2))*(q_(j+3)); (b') p_(i+1) > (q_(j-1))*(q_j). From this we can see that for every prime r, there are only finitely many terms that are not divisible by r (the largest term not divisible by 5 is (7*9*13*19*...*919)*(4*2) = 1.1832*10^190, nevertheless). But note that these are not sufficient. For example, k = (7*9*13*19*...*55819*55831*55837*55849)*(4*2*5*11*17*23) is not a term because although 55849 < 29*41*47, 55831*55837*55849 > 29*41*...*89 so k' = (7*9*13*19*...*55819)*(4*2*5*11*...*89) have k' < k but b(k') = (256/216)*b(k). Similarly, k = (7*9*13*19*...*643*661)*(4*2*5*11*17*23*29) is not a term because although 23*29 < 673, 5*11*17*23*29 > 673*691 so k' = (7*9*13*19*...*643*661*673*691)*(4*2) have k' < k but b(k') = (36/32)*b(k).
LINKS
EXAMPLE
A319100(504) = 144 which is larger than A319100(i) for i < 504, so 144 is a term.
PROG
(PARI) P(n) = if(!n, 1, if(n==1, 7, my(i=0, N=9); forprime(p=7, oo, if(p%3==1, i++; N*=p); if(i==n-1, return(N)))))
Q(n) = if(!n, 1, if(n==1, 4, my(i=0, N=4); forprime(p=2, oo, if(p%3==2, i++; N*=p); if(i==n-1, return(N)))))
v = []; for(i=0, 15, for(j=0, 15, if(P(i)*Q(j) < min(P(16), Q(16)), v=concat(v, [P(i)*Q(j)])))); v=vecsort(v);
u = []; for(i=1, #v, if(sum(j=1, i-1, A319100(v[j]) >= A319100(v[i]))==0, u=concat(u, [v[i]])));
vecsort(concat(select(i->(i!=4&&i!=28&&i!=2520), u), [3, 21, 168, 2184])) \\ See A319100 for its program
CROSSREFS
For the records see A307252.
Sequence in context: A318395 A151267 A319558 * A320803 A262184 A091489
KEYWORD
nonn
AUTHOR
Jianing Song, Mar 31 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 14:34 EDT 2024. Contains 372540 sequences. (Running on oeis4.)