Theorem. Let R be a ring with multiplicative identity e whose additive group is a free module over $\mathbb{Z}/n\mathbb{Z}$. Then R has a $\mathbb{Z}/n\mathbb{Z}$ -basis containing e.

Proof. Let $\{b_i\}_{i \in I}$ be a basis of R, then every element in R can be uniquely written as $x = \sum_{i \in I} x_i b_i^{i}$, where $0 \le x_i < n$, all but finitely many x_i are zero. In particular, write $e = \sum_{i \in I} e_i b_i$.

Let $n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$ be the canonical factorization of n. We first show that for each $1 \le j \le k$, there exists $i_j \in I$ such that p_j does not divide e_{i_j} . Suppose otherwise that p_j divides e_i for all $i \in I$, then there exists $a \in R$ such that $p_j a = e$. For every $x \in R$, we have $\frac{n}{p_j}x = e \cdot \frac{n}{p_j}x = (p_j a) \cdot \frac{n}{p_j}x = nax = 0$. In particular, fix $i_0 \in I$, we have $\frac{n}{p_i}b_{i_0} = 0_R$, then 0_R is not a unique linear combination of $\{b_i\}_{i \in I}$, a contradiction.

For each $1 \leq j \leq k$, pick $i_j \in I$ such that p_j does not divide e_{i_j} . Fix $\gamma \in I$. Now construct $\{c_i\}_{i \in I}$ as follows: $c_{\gamma} = e$; for $i \in I, i \neq \gamma, c_i = s_i b_i + t_i b_{\gamma}$, where $0 \leq s_i, t_i < n$ satisfy the conditions

$$s_i \equiv \begin{cases} 1, & i \neq i_j \\ 0, & i = i_j \end{cases} (\text{mod } p_j^{a_j}), t_i \equiv \begin{cases} 0, & i \neq i_j \\ 1, & i = i_j \end{cases} (\text{mod } p_j^{a_j}).$$

We show that $\{c_i\}_{i \in I}$ is a basis. First, for $x \in R$, write $x = \sum_{i \in I} x_i b_i$. For each $i \in I$, pick $0 \le y_i < n$ satisfying the condition

$$y_i \equiv \begin{cases} x_i - e_i \frac{x_{i_j}}{e_{i_j}}, & i \neq i_j, \gamma \\ \frac{x_{i_j}}{e_{i_j}}, & i = \gamma \\ x_\gamma - e_\gamma \frac{x_{i_j}}{e_{i_j}}, & i = i_j \neq \gamma \end{cases} \pmod{p_j^{a_j}},$$

Consider $\sum_{i \in I} y_i c_i$, which expands to

$$\sum_{i \in I} y_i c_i = y_\gamma e + \sum_{i \in I, i \neq \gamma} y_i (s_i b_i + t_i b_\gamma)$$

= $y_\gamma \sum_{i \in I} e_i b_i + \sum_{i \in I, i \neq \gamma} y_i (s_i b_i + t_i b_\gamma)$
= $(y_\gamma e_\gamma + \sum_{i \in I, i \neq \gamma} y_i t_i) b_\gamma + \sum_{i \in I, i \neq \gamma} (y_\gamma e_i + y_i s_i) b_i.$

It is easy to show that for $1 \leq j \leq k$, $y_{\gamma}e_{\gamma} + \sum_{i \in I, i \neq \gamma} y_i t_i \equiv x_{\gamma} \pmod{p_j^{a_j}}$ and $y_{\gamma}e_i + y_i s_i \equiv x_i \pmod{p_j^{a_j}}, i \in I, i \neq \gamma$.ⁱⁱ

Hence we have $y_{\gamma}e_{\gamma} + \sum_{i \in I, i \neq \gamma} y_i t_i \equiv x_{\gamma} \pmod{n}$ and $y_{\gamma}e_i + y_i s_i \equiv x_i \pmod{n}$, $i \in I, i \neq \gamma$, and it follows that

$$\begin{aligned} x &= \sum_{i \in I} y_i c_i. \\ &\text{Moreover, if } \sum_{i \in I} z_i c_i = 0_R, \text{ then we have } z_{\gamma} e_{\gamma} + \sum_{i \in I, i \neq \gamma} z_i t_i \equiv 0 \pmod{p_j^{a_j}}, z_{\gamma} e_i + z_i s_i \equiv 0 \pmod{p_j^{a_j}}, i \in I, i \neq \gamma. \end{aligned}$$

It is not hard to see that these conditions imply that $z_i \equiv 0 \pmod{p_j^{a_j}}$ for all $i \in I, 1 \leq j \leq k^{\text{ii}}$, so $z_i \equiv 0 \pmod{n}$ for all $i \in I$, and $\{c_i\}_{i \in I}$ are linearly independent. Then we reach the conclusion that $\{c_i\}_{i \in I}$ is a basis of R containing

ⁱThere is a unique way to define scalar multiplication of $\mathbb{Z}/n\mathbb{Z}$ and R, namely for $0 \le m < n$, $[m]x = (\underbrace{[1] + [1] + \dots + [1]}_{l = 1})x = \underbrace{(m]x = (\underbrace{[1] + [1] + \dots + [1]}_{l = 1})x}_{l = 1}$

e.

 $[\]underbrace{[1]x + [1]x + \dots + [1]x}_{m \text{ times}} = \underbrace{x + x + \dots + x}_{m \text{ times}} = mx. \text{ We shall not distinguish accumulated sums and scalar multiplications in the proof.}$ ⁱⁱThere are two cases: $i_j \neq \gamma$ and $i_j = \gamma$.