Theorem. Let R be a ring with multiplicative identity e whose additive group is a free module over $\mathbb{Z} / n \mathbb{Z}$. Then R has a $\mathbb{Z} / n \mathbb{Z}$-basis containing e.

Proof. Let $\left\{b_{i}\right\}_{i \in I}$ be a basis of R, then every element in R can be uniquely written as $x=\sum_{i \in I} x_{i} b_{i}{ }^{\mathrm{i}}$, where $0 \leq x_{i}<n$, all but finitely many x_{i} are zero. In particular, write $e=\sum_{i \in I} e_{i} b_{i}$.

Let $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ be the canonical factorization of n. We first show that for each $1 \leq j \leq k$, there exists $i_{j} \in I$ such that p_{j} does not divide $e_{i_{j}}$. Suppose otherwise that p_{j} divides e_{i} for all $i \in I$, then there exists $a \in R$ such that $p_{j} a=e$. For every $x \in R$, we have $\frac{n}{p_{j}} x=e \cdot \frac{n}{p_{j}} x=\left(p_{j} a\right) \cdot \frac{n}{p_{j}} x=n a x=0$. In particular, fix $i_{0} \in I$, we have $\frac{n}{p_{j}} b_{i_{0}}=0_{R}$, then 0_{R} is not a unique linear combination of $\left\{b_{i}\right\}_{i \in I}$, a contradiction.

For each $1 \leq j \leq k$, pick $i_{j} \in I$ such that p_{j} does not divide $e_{i_{j}}$. Fix $\gamma \in I$. Now construct $\left\{c_{i}\right\}_{i \in I}$ as follows: $c_{\gamma}=e$; for $i \in I, i \neq \gamma, c_{i}=s_{i} b_{i}+t_{i} b_{\gamma}$, where $0 \leq s_{i}, t_{i}<n$ satisfy the conditions

$$
s_{i} \equiv\left\{\begin{array}{ll}
1, & i \neq i_{j} \\
0, & i=i_{j}
\end{array}\left(\bmod p_{j}^{a_{j}}\right), t_{i} \equiv\left\{\begin{array}{ll}
0, & i \neq i_{j} \\
1, & i=i_{j}
\end{array}\left(\bmod p_{j}^{a_{j}}\right)\right.\right.
$$

We show that $\left\{c_{i}\right\}_{i \in I}$ is a basis. First, for $x \in R$, write $x=\sum_{i \in I} x_{i} b_{i}$. For each $i \in I$, pick $0 \leq y_{i}<n$ satisfying the condition

$$
y_{i} \equiv \begin{cases}x_{i}-e_{i} \frac{x_{i_{j}}}{e_{i_{j}}}, & i \neq i_{j}, \gamma \\ \frac{x_{i_{j}}}{e_{i_{j}}}, & i=\gamma \quad\left(\bmod p_{j}^{a_{j}}\right), \\ x_{\gamma}-e_{\gamma} \frac{x_{i_{j}}}{e_{i_{j}}}, & i=i_{j} \neq \gamma\end{cases}
$$

Consider $\sum_{i \in I} y_{i} c_{i}$, which expands to

$$
\begin{aligned}
\sum_{i \in I} y_{i} c_{i} & =y_{\gamma} e+\sum_{i \in I, i \neq \gamma} y_{i}\left(s_{i} b_{i}+t_{i} b_{\gamma}\right) \\
& =y_{\gamma} \sum_{i \in I} e_{i} b_{i}+\sum_{i \in I, i \neq \gamma} y_{i}\left(s_{i} b_{i}+t_{i} b_{\gamma}\right) \\
& =\left(y_{\gamma} e_{\gamma}+\sum_{i \in I, i \neq \gamma} y_{i} t_{i}\right) b_{\gamma}+\sum_{i \in I, i \neq \gamma}\left(y_{\gamma} e_{i}+y_{i} s_{i}\right) b_{i}
\end{aligned}
$$

It is easy to show that for $1 \leq j \leq k, y_{\gamma} e_{\gamma}+\sum_{i \in I, i \neq \gamma} y_{i} t_{i} \equiv x_{\gamma}\left(\bmod p_{j}^{a_{j}}\right)$ and $y_{\gamma} e_{i}+y_{i} s_{i} \equiv x_{i}\left(\bmod p_{j}^{a_{j}}\right), i \in I, i \neq \gamma .{ }^{\mathrm{ii}}$ Hence we have $y_{\gamma} e_{\gamma}+\sum_{i \in I, i \neq \gamma} y_{i} t_{i} \equiv x_{\gamma}(\bmod n)$ and $y_{\gamma} e_{i}+y_{i} s_{i} \equiv x_{i}(\bmod n), i \in I, i \neq \gamma$, and it follows that $x=\sum_{i \in I} y_{i} c_{i}$.

Moreover, if $\sum_{i \in I} z_{i} c_{i}=0_{R}$, then we have $z_{\gamma} e_{\gamma}+\sum_{i \in I, i \neq \gamma} z_{i} t_{i} \equiv 0\left(\bmod p_{j}^{a_{j}}\right), z_{\gamma} e_{i}+z_{i} s_{i} \equiv 0\left(\bmod p_{j}^{a_{j}}\right), i \in I, i \neq \gamma$. It is not hard to see that these conditions imply that $z_{i} \equiv 0\left(\bmod p_{j}^{a_{j}}\right)$ for all $i \in I, 1 \leq j \leq k^{\mathrm{ii}}$, so $z_{i} \equiv 0(\bmod n)$ for all $i \in I$, and $\left\{c_{i}\right\}_{i \in I}$ are linearly independent. Then we reach the conclusion that $\left\{c_{i}\right\}_{i \in I}$ is a basis of R containing e.

[^0]
[^0]: ${ }^{\mathrm{i}}$ There is a unique way to define scalar multiplication of $\mathbb{Z} / n \mathbb{Z}$ and R, namely for $0 \leq m<n,[m] x=(\underbrace{[1]}_{m \text { times }}+[1]+\cdots+[1]) x=$ $\underbrace{[1] x+[1] x+\cdots+[1] x}_{m \text { times }}=\underbrace{x+x+\cdots+x}_{m \text { times }}=m x$. We shall not distinguish accumulated sums and scalar multiplications in the proof.
 ${ }^{\text {ii }}$ There are two cases: $i_{j} \neq \gamma$ and $i_{j}=\gamma$.

