The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A306260 Number of ways to write n as w*(4w+1) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers. 1
1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 4, 2, 3, 3, 2, 4, 4, 3, 1, 2, 1, 2, 3, 1, 2, 5, 5, 4, 5, 5, 4, 3, 1, 2, 4, 4, 4, 4, 5, 5, 7, 2, 2, 5, 3, 4, 5, 5, 3, 7, 4, 2, 5, 2, 4, 7, 6, 6, 6, 5, 6, 5, 3, 5, 6, 5, 8, 9, 8, 4, 7, 2, 4, 9, 2, 6, 5, 8, 6, 7, 7, 2, 6, 4, 4, 12, 6, 5, 5, 7, 9, 8, 5, 6, 9, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 1, 2, 4, 7, 9, 11, 14, 23, 25, 28, 37.
Conjecture 2: Each n = 0,1,2,... can be written as w*(4w+2) + x*(4x-1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
Conjecture 3: Each n = 0,1,2,... can be written as 4*w^2 + x*(4x+1) + y*(4y-2) + z*(4z-3) with w,x,y,z nonnegative integers.
We have verified that a(n) > 0 for all n = 0..2*10^6. By Theorem 1.3 in the linked 2017 paper of the author, any nonnegative integer can be written as x*(4x-1) + y*(4y-2) + z*(4z-3) with x,y,z integers.
LINKS
Zhi-Wei Sun, A result similar to Lagrange's theorem, J. Number Theory 162(2016), 190-211.
Zhi-Wei Sun, On x(ax+1)+y(by+1)+z(cz+1) and x(ax+b)+y(ay+c)+z(az+d), J. Number Theory 171(2017), 275-283.
EXAMPLE
a(11) = 1 with 11 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 1*(4*1-3).
a(23) = 1 with 23 = 2*(4*2+1) + 1*(4*1-1) + 1*(4*1-2) + 0*(4*0-3).
a(25) = 1 with 25 = 0*(4*0+1) + 1*(4*1-1) + 2*(4*2-2) + 2*(4*2-3).
a(28) = 1 with 28 = 2*(4*2+1) + 0*(4*0-1) + 0*(4*0-2) + 2*(4*2-3).
a(37) = 1 with 37 = 1*(4*1+1) + 1*(4*1-1) + 1*(4*1-2) + 3*(4*3-3).
MATHEMATICA
QQ[n_]:=QQ[n]=IntegerQ[Sqrt[16n+1]]&&Mod[Sqrt[16n+1], 8]==1;
tab={}; Do[r=0; Do[If[QQ[n-x(4x-1)-y(4y-2)-z(4z-3)], r=r+1], {x, 0, (Sqrt[16n+1]+1)/8}, {y, 0, (Sqrt[4(n-x(4x-1))+1]+1)/4}, {z, 0, (Sqrt[16(n-x(4x-1)-y(4y-2))+9]+3)/8}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
CROSSREFS
Sequence in context: A237253 A080634 A109925 * A180227 A001468 A014675
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 01 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 10:20 EDT 2024. Contains 372594 sequences. (Running on oeis4.)