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The sequence in question (an)n∈N is given by

an :=
(−2)n√

2

dn
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arcsinh
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x

)∣∣∣
x=1

(1)

where the �rst elements turn out to be

n 1 2 3 4 5 6 7 8 9 10 . . .

an 1 3 13 75 561 5355 63405 894915 14511105 263544435 . . .

In this document, we want to show the following properties of said sequence.

Theorem 1. The sequence (an)n∈N satis�es an = (−1)n
∑n−1

j=0 b(j, n) for any n ∈ N
where (b(j, n))j∈Z,n∈N is a recursive sequence of integers given by

b(0, 1) = −1 b(j, n) = 0 if j < 0 or j ≥ n

b(j, n+ 1) = b(j, n)(2j − n) + b(j − 1,n)(2j − 3n− 1) for all n ∈ N, j ∈ {0, . . . , n}.
(2)

In particular, (an)n∈N is a sequence of integers.

For this we need to structure the n-th derivative of arcsinh( 1x).

Lemma 1. For all n ∈ N
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(3)

where (b(j, n))j∈Z,n∈N is the sequence de�ned in (2).

Proof. Proof by induction. n = 1:
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Now di�erentiating the right-hand side of (3) yields
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=
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b(j, n)
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3
2x2j [2j(x2 + 1)− n(x2 + 1)− (2n− 1)x2]

x2n(x2 + 1)2n−1

=
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=
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where in the second to last step we made an index change j → j− 1 (to recover x2j from
x2j+2) and used b(n, n) = b(−1, n) = 0.

Proof of Theorem 1. By Lemma 1,

an =
(−2)n√
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for any n ∈ N.
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