OEIS A300793 Notes

The sequence in question $\left(a_{n}\right)_{n \in \mathbb{N}}$ is given by

$$
\begin{equation*}
a_{n}:=\left.\frac{(-2)^{n}}{\sqrt{2}} \frac{d^{n}}{d x^{n}} \operatorname{arcsinh}\left(\frac{1}{x}\right)\right|_{x=1} \tag{1}
\end{equation*}
$$

where the first elements turn out to be

n	1	2	3	4	5	6	7	8	9	10	\ldots
a_{n}	1	3	13	75	561	5355	63405	894915	14511105	263544435	\ldots

In this document, we want to show the following properties of said sequence.
Theorem 1. The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ satisfies $a_{n}=(-1)^{n} \sum_{j=0}^{n-1} b(j, n)$ for any $n \in \mathbb{N}$ where $(b(j, n))_{j \in \mathbb{Z}, n \in \mathbb{N}}$ is a recursive sequence of integers given by

$$
\begin{gather*}
b(0,1)=-1 \quad b(j, n)=0 \text { if } j<0 \text { or } j \geq n \\
b(j, n+1)=b(j, n)(2 j-n)+b(j-1, n)(2 j-3 n-1) \text { for all } n \in \mathbb{N}, j \in\{0, \ldots, n\} . \tag{2}
\end{gather*}
$$

In particular, $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of integers.
For this we need to structure the n-th derivative of $\operatorname{arcsinh}\left(\frac{1}{x}\right)$.
Lemma 1. For all $n \in \mathbb{N}$

$$
\begin{equation*}
\frac{d^{n}}{d x^{n}} \operatorname{arcsinh}\left(\frac{1}{x}\right)=\frac{\sum_{j=0}^{n-1} b(j, n) x^{2 j}}{x^{n}\left(x^{2}+1\right)^{n-\frac{1}{2}}} \tag{3}
\end{equation*}
$$

where $(b(j, n))_{j \in \mathbb{Z}, n \in \mathbb{N}}$ is the sequence defined in (2).
Proof. Proof by induction. $n=1$:

$$
\frac{d}{d x} \operatorname{arcsinh}\left(\frac{1}{x}\right)=\frac{-\frac{1}{x^{2}}}{\sqrt{1+\frac{1}{x^{2}}}}=\frac{-1}{x^{2}\left(1+\frac{1}{x^{2}}\right)^{\frac{1}{2}}}=\frac{b(0,1)}{x\left(x^{2}+1\right)^{\frac{1}{2}}}
$$

Now differentiating the right-hand side of (3) yields

$$
\begin{aligned}
\frac{d}{d x} \frac{\sum_{j=0}^{n-1} b(j, n) x^{2 j}}{x^{n}\left(x^{2}+1\right)^{n-\frac{1}{2}}} & =\sum_{j=0}^{n-1} b(j, n) \frac{d}{d x} \frac{x^{2 j}}{x^{n}\left(x^{2}+1\right)^{n-\frac{1}{2}}} \\
& =\sum_{j=0}^{n-1} b(j, n) \frac{x^{n-1}\left(x^{2}+1\right)^{n-\frac{3}{2}} x^{2 j}\left[2 j\left(x^{2}+1\right)-n\left(x^{2}+1\right)-(2 n-1) x^{2}\right]}{x^{2 n}\left(x^{2}+1\right)^{2 n-1}} \\
& =\sum_{j=0}^{n-1} b(j, n) \frac{x^{2 j+2}(2 j-3 n+1)+x^{2 j}(2 j-n)}{x^{n+1}\left(x^{2}+1\right)^{n+\frac{1}{2}}} \\
& =\frac{\sum_{j=0}^{n} x^{2 j}[b(j-1, n)(2 j-3 n-1)+b(j, n)(2 j-n)]}{x^{n+1}\left(x^{2}+1\right)^{n+\frac{1}{2}}} \\
& \underline{2|2|} \frac{\sum_{j=0}^{n} b(j, n+1) x^{2 j}}{x^{n+1}\left(x^{2}+1\right)^{n+\frac{1}{2}}}
\end{aligned}
$$

where in the second to last step we made an index change $j \rightarrow j-1$ (to recover $x^{2 j}$ from $\left.x^{2 j+2}\right)$ and used $b(n, n)=b(-1, n)=0$.

Proof of Theorem 1. By Lemma 1,

$$
\begin{aligned}
a_{n}=\left.\frac{(-2)^{n}}{\sqrt{2}} \frac{d^{n}}{d x^{n}} \operatorname{arcsinh}\left(\frac{1}{x}\right)\right|_{x=1} & =\left.\frac{(-2)^{n}}{\sqrt{2}} \frac{\sum_{j=0}^{n-1} b(j, n) x^{2 j}}{x^{n}\left(x^{2}+1\right)^{n-\frac{1}{2}}}\right|_{x=1} \\
& =\frac{(-2)^{n}}{\sqrt{2}} \frac{\sum_{j=0}^{n-1} b(j, n)}{2^{n-\frac{1}{2}}}=(-1)^{n} \sum_{j=0}^{n-1} b(j, n)
\end{aligned}
$$

for any $n \in \mathbb{N}$.

