The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297404 A binary representation of the positive exponents that appear in the prime factorization of a number, shown in decimal. 4
0, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1, 8, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 4, 3, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 32, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 1, 9, 8, 1, 1, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
This sequence is similar to A087207; here we encode the exponents, there the prime numbers appearing in the prime factorization of a number.
The binary representation of a(n) shows which exponents appear in the prime factorization of n, but without multiplicities:
- for any prime number p and k > 0, if p^k divides n but p^(k+1) does not divide n, then a(n) AND 2^(k-1) = 2^(k-1) (where AND denotes the bitwise AND operator),
- conversely, if a(n) AND 2^(k-1) = 2^(k-1) for some k > 0, then there is prime number p such that p^k divides n but p^(k+1) does not divide n.
LINKS
FORMULA
a(p^k) = 2^(k-1) for any prime number p and k > 0.
a(n^2) = A000695(2 * a(n)) / 2 for any n > 0.
a(n) <= 1 iff n is squarefree (A005117).
a(n) <= 3 iff n is cubefree (A004709).
a(n) is odd iff n belongs to A052485 (weak numbers).
a(n) is even iff n belongs to A001694 (powerful numbers).
a(n) AND 2 = 2 iff n belongs to A038109 (where AND denotes the bitwise AND operator).
A000120(a(n)) <= 1 iff n belongs to A072774 (powers of squarefree numbers).
A000120(a(n)) > 1 iff n belongs to A059404.
If gcd(m, n) = 1, then a(m * n) = a(m) OR a(n) (where OR denotes the bitwise OR operator).
a(n) = a(A328400(n)). - Peter Munn, Oct 02 2023
EXAMPLE
For n = 90:
- 90 = 5^1 * 3^2 * 2^1,
- the exponents appearing in the prime factorization of 90 are 1 and 2,
- hence a(90) = 2^(1-1) + 2^(2-1) = 3.
MATHEMATICA
Array[Total@ Map[2^(# - 1) &, Union[FactorInteger[#][[All, -1]] ]] - Boole[# == 1] &, 86] (* Michael De Vlieger, Dec 29 2017 *)
PROG
(PARI) a(n) = my (x=Set(factor(n)[, 2]~)); sum(i=1, #x, 2^(x[i]))/2
CROSSREFS
Sequence in context: A162512 A162510 A292589 * A235388 A294897 A252733
KEYWORD
nonn,easy,base
AUTHOR
Rémy Sigrist, Dec 29 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 22:16 EDT 2024. Contains 372741 sequences. (Running on oeis4.)