The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A295185 a(n) is the smallest composite number whose prime divisors (with multiplicity) sum to prime(n); n >= 3. 11
6, 10, 28, 22, 52, 34, 76, 184, 58, 248, 148, 82, 172, 376, 424, 118, 488, 268, 142, 584, 316, 664, 1335, 388, 202, 412, 214, 436, 3729, 508, 1048, 274, 2919, 298, 1208, 1256, 652, 1336, 1384, 358, 3801, 382, 772, 394, 6501, 7385, 892, 454, 916, 1864, 478, 5061, 2008, 2056, 2104, 538, 2168, 1108, 562, 5943, 9669 (list; graph; refs; listen; history; text; internal format)
OFFSET
3,1
COMMENTS
Sequence is undefined for n=1,2 since no composites exist whose prime divisors sum to 2, 3. For n >= 3, a(n) = A288814(prime(n)) = prime(n-k)*B(prime(n) - prime(n-k)) where B=A056240, and k >= 1 is the "type" of prime(n), indicated as prime(n)~k(g1,g2,...,gk) where gi = prime(n-(i-1)) - prime(n-i); 1 <= i <= k. Thus: 5~1(2), 211~2(12,2), 4327~3(30,8,6) etc. The sequence relates to gaps between odd primes, and in particular to the sequence of k prime gaps below prime(n). The even-indexed terms of B are relevant, as are those of subsequences:
C=A288313, 2,4 plus terms B(n) where n-3 is prime (A298252),
D=A297150, terms B(n) where n-5 is prime and n-3 is composite (A297925) and
E=A298615, terms B(n) where both n-3 and n-5 are composite (A298366).
The above sequences of indices 2m form a partition of the even numbers and the corresponding terms B(2m) form a partition of the even-indexed terms of A056240. The union of D and E is the sequence A292081 = B-C.
Let g(n,t) = prime(n) - prime(n-t), t < n, and h(n,t) = g(n,t) - g(n,1), 1 < t < n. If g1=g(n,1) is a term in A298252 (g1-3 is prime), then B(g1) is a term in C, so k=1. If g1 belongs to A297925 or A298366 then B(g1) is a term in D or E and the value of k depends on subsequent gaps below prime(n), within a range dependent on g1.
Let range R1(g1) = u - g(n,1) where u is the index in B of the greatest term in C such that C(u) < B(g1). Let range R2(g1) = v-g(n,1) where v is the index in B of the greatest term in D such that D(v) <= B(g1). For all n, R2 < R1, and if g1 is a term in D then R2(g1)=0. Examples: R1(12)=2, R2(12)=0, R1(30)=26, R2(30)=6.
k >= 1 is the smallest integer such that B(g(n,k)) <= B(g(n,t)) for all t satisfying g1 <= g(n,t) <= g1 + R1(g1). For g1-3 prime, k=1. If g1-3 is composite, let z be least integer > 1 such that g(n,z)-3 is prime, and let w be least integer >= 1 such that g(n,w)-5 is prime. Then z "complies" if h(n,z) <= R1, and w "complies" if h(n,w) <= R2. If g1-5 is prime then R2=w=0 and only z is relevant.
B(g1) must belong to C,D or E. If in C (g1-3 is prime) then k=1. If in D (g1-5 is prime), k=z if z complies, otherwise k=1. If B(g1) is in E and z complies but not w then k=z, or if w complies but not z then k=w. If B(g1) is in E and z,w both comply then k=z if 3*(g(n,z)-3) < 5*(g(n,w)-5), otherwise k=w. If neither z nor w comply, then k=1.
Conjecture: For all n >= 3, a(n) >= A288189(n).
LINKS
FORMULA
a(n) = A288814(prime(n)) = prime(n-k)*A056240(prime(n) - prime(n-k)) for some k >= 1 and prime(n-k) = gpf(A288814(prime(n)).
a(n) >= A288189(n).
EXAMPLE
5=prime(3), g(3,1)=5-3=2, a term in C; k=1, and a(3)=3*B(5-3)=3*2=6; 5~1(2).
17=prime(7), g(7,1)=17-13=4, a term in C; k=1, a(7)=13*B(17-13)=13*4=52; 17~1(4).
211=prime(47); g(47,1)=12, a term in D, R1=2, R2=0, k=z=2, a(47)=197*b(211-197)=197*33=6501; 211~2(12,2), and 211 is first prime of type k=2.
8923=prime(1109); g(1109,1)=30, a term in E. R1=26, R2=6, z=3 and w=2 both comply but 3*(g(n,3)-3)=159 > 5*(g(n,2)-5)=155, so k=w=2. Therefore a(1109)=8887*b(8923-8887)=8887*b(36)=8887*155=1377485; 8923~2(30,6).
40343=prime(4232); g(4232,1)=54, a term in E. R1=58, R2=12,z=6 and w=3, both comply, 3*(g(n,z)-3)=309 and 5*(g(n,w)-5)=305 therefore k=w=3 and a(4232) = 40277*b(40343-40277)=40277*b(66)=40277*305=12284485; 40343~3(54,6,6).
81611=prime(7981); g(81611,1)=42, a term in D, R1=22, R2=0; z complies, k=z=6, a(7981)=81547*b(81611-81547)=81546*b(64)=81546*183=14923101; 81611~6(42,6,4,6,2,4) and is the first prime of type k=6.
If p is the greater of twin/cousin primes then p~1(2), p~1(4), respectively.
MATHEMATICA
b[n_] := b[n] = Total[Times @@@ FactorInteger[n]];
a[n_] := For[k = 2, True, k++, If[CompositeQ[k], If[b[k] == Prime[n], Return[k]]]];
Table[a[n], {n, 3, 63}] (* Jean-François Alcover, Feb 23 2018 *)
PROG
(PARI) a(n) = { my(p=prime(n)); forcomposite(x=6, , my(f=factor(x)); if(f[, 1]~*f[, 2]==p, return(x))); } \\ Iain Fox, Dec 08 2017
CROSSREFS
Sequence in context: A287989 A081394 A184387 * A225845 A014494 A318894
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 11:42 EDT 2024. Contains 372540 sequences. (Running on oeis4.)