The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A291820 G.f. A(x,y) satisfies: A( x - x*y*A(x,y), y) = x + x*(1-y)*A(x,y), where the coefficients T(n,k) of x^n*y^k form a triangle read by rows n>=1, for k=0..n-1. 11
1, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 38, 14, 0, 1, 30, 157, 189, 42, 0, 1, 50, 477, 1245, 904, 132, 0, 1, 77, 1197, 5616, 8791, 4242, 429, 0, 1, 112, 2632, 19881, 55566, 57854, 19723, 1430, 0, 1, 156, 5250, 59327, 265204, 491947, 363880, 91366, 4862, 0, 1, 210, 9714, 155783, 1035442, 3062271, 4039551, 2220933, 423124, 16796, 0, 1, 275, 16929, 370205, 3472513, 15217674, 31979723, 31463341, 13285415, 1963169, 58786, 0, 1, 352, 28094, 811877, 10331673, 63678254, 197983540, 310618856, 235959185, 78419541, 9138416, 208012, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
More generally, we have the following related identity.
Given functions F and G with F(0)=0, F'(0)=1, G(0)=0, G'(0)=0,
if F(x - y*G(x)) = x + (1-y)*G(x), then
(C1) F(x) = x + G( y*F(x) + (1-y)*x ),
(C2) y*F(x) + (1-y)*x = Series_Reversion(x - y*G(x)),
(C3) F(x) = x + G(x + y*G(x + y*G(x + y*G(x +...)))),
(C4) F(x) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) G(x)^n / n!.
The g.f. A(x,y) of this sequence equals F(x) in the above when G(x) = x*F(x).
LINKS
FORMULA
G.f. A(x,y) also satisfies:
(G1) A(x,y) = x + A( y*A(x,y) + x*(1-y), y).
(G2) y*A(x,y) + x*(1-y) = Series_Reversion( x - x*y*A(x,y) ).
(G3) x*y + (1-y)*B(x,y) = Series_Reversion( x + x*(1-y)*A(x,y) ), where B( A(x,y), y) = x.
(G4) A(x,y) = x + Sum_{n>=1} y^(n-1) * d^(n-1)/dx^(n-1) A(x,y)^n * x^n / n!.
In formulas 2 and 3, the series reversion is taken with respect to variable x.
Formulas for terms:
(T1) T(n,0) = 1.
(T2) T(n,1) = (n-1)*n*(n+4)/6. for n>=1.
(T3) T(n+1,n-1) = binomial(2*n,n)/(n+1) = A000108(n) for n>=1.
Row sums:
(S1) Sum_{k=0..n-1} T(n,k) = A088714(n-1).
(S2) Sum_{k=0..n-1} T(n,k) * 2^(n-k-1) = A276358(n).
(S3) Sum_{k=0..n-1} T(n,k) * 3^(n-k-1) = A291744(n).
(S4) Sum_{k=0..n-1} T(n,k) * 2^k * 3^(n-k-1) = A291743(n).
(S5) Sum_{k=0..n-1} T(n,k) * 2^k = A291813(n).
(S6) Sum_{k=0..n-1} T(n,k) * 3^k = A291814(n).
(S7) Sum_{k=0..n-1} T(n,k) * 4^k = A291815(n).
(S8) Sum_{k=0..n-1} T(n,k) * 3^k * 2^(n-k-1) = A291816(n).
(S9) Sum_{k=0..n-1} T(n,k) * 3^k * 4^(n-k-1) = A291817(n).
(S10) Sum_{k=0..n-1} T(n,k) * 4^k * 3^(n-k-1) = A291818(n).
(S11) Sum_{k=0..n-1} T(n,k) * 4^(n-k-1) = A291819(n).
EXAMPLE
G.f.: A(x,y) = x + x^2 + (2*y + 1)*x^3 + (5*y^2 + 7*y + 1)*x^4 +
(14*y^3 + 38*y^2 + 16*y + 1)*x^5 +
(42*y^4 + 189*y^3 + 157*y^2 + 30*y + 1)*x^6 +
(132*y^5 + 904*y^4 + 1245*y^3 + 477*y^2 + 50*y + 1)*x^7 +
(429*y^6 + 4242*y^5 + 8791*y^4 + 5616*y^3 + 1197*y^2 + 77*y + 1)*x^8 +
(1430*y^7 + 19723*y^6 + 57854*y^5 + 55566*y^4 + 19881*y^3 + 2632*y^2 + 112*y + 1)*x^9 +
(4862*y^8 + 91366*y^7 + 363880*y^6 + 491947*y^5 + 265204*y^4 + 59327*y^3 + 5250*y^2 + 156*y + 1)*x^10 +
(16796*y^9 + 423124*y^8 + 2220933*y^7 + 4039551*y^6 + 3062271*y^5 + 1035442*y^4 + 155783*y^3 + 9714*y^2 + 210*y + 1)*x^11 +
(58786*y^10 + 1963169*y^9 + 13285415*y^8 + 31463341*y^7 + 31979723*y^6 + 15217674*y^5 + 3472513*y^4 + 370205*y^3 + 16929*y^2 + 275*y + 1)*x^12 +...
such that
A( x - x*y*A(x,y), y) = x + x*(1-y)*A(x,y).
Also,
A(x,y) = x + Z*A(Z, y) where Z = y*A(x,y) + (1-y)*x.
...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
1, 0;
1, 2, 0;
1, 7, 5, 0;
1, 16, 38, 14, 0;
1, 30, 157, 189, 42, 0;
1, 50, 477, 1245, 904, 132, 0;
1, 77, 1197, 5616, 8791, 4242, 429, 0;
1, 112, 2632, 19881, 55566, 57854, 19723, 1430, 0;
1, 156, 5250, 59327, 265204, 491947, 363880, 91366, 4862, 0;
1, 210, 9714, 155783, 1035442, 3062271, 4039551, 2220933, 423124, 16796, 0;
1, 275, 16929, 370205, 3472513, 15217674, 31979723, 31463341, 13285415, 1963169, 58786, 0;
1, 352, 28094, 811877, 10331673, 63678254, 197983540, 310618856, 235959185, 78419541, 9138416, 208012, 0;
1, 442, 44759, 1666522, 27896583, 232505790, 1014785477, 2355151627, 2859824058, 1721756609, 458956233, 42718416, 742900, 0; ...
RELATED SEQUENCES.
Given T(n,k) is the coefficient of x^n*y^k in g.f. A(x,y),
if b(n) = Sum_{k=0..n-1} T(n,k) * p^k * q^(n-k-1)
then B(x) = Sum_{n>=1} b(n)*x^n satisfies
(E1) B(x - p*x*B(x)) = x + (q-p)*x*B(x)
(E2) B(x) = x + Z*B(Z) where Z = p*B(x) + (q-p)*x.
...
G.f.s of columns of this triangle begin:
C.0: 1/(1-x)
C.1: (2 - x)/(1-x)^4
C.2: (5 + 3*x - 4*x^2 + x^3)/(1-x)^7
C.3: (14 + 49*x - 15*x^2 - 9*x^3 + 6*x^4 - x^5)/(1-x)^10
C.4: (42 + 358*x + 315*x^2 - 217*x^3 + 30*x^4 + 18*x^5 - 8*x^6 + x^7)/(1-x)^13
C.5: (132 + 2130*x + 5822*x^2 + 1403*x^3 - 1681*x^4 + 602*x^5 - 50*x^6 - 30*x^7 + 10*x^8 - x^9)/(1-x)^16
C.6: (429 + 11572*x + 62502*x^2 + 82763*x^3 + 2951*x^4 - 9760*x^5 + 5395*x^6 - 1329*x^7 + 75*x^8 + 45*x^9 - 12*x^10 + x^11)/(1-x)^19
C.7: (1430 + 59906*x + 541211*x^2 + 1506161*x^3 + 1217687*x^4 + 16416*x^5 - 35746*x^6 + 36682*x^7 - 13502*x^8 + 2550*x^9 - 105*x^10 - 63*x^11 + 14*x^12 - x^13)/(1-x)^22
C.8: (4862 + 301574*x + 4165915*x^2 + 19578410*x^3 + 34788033*x^4 + 20899306*x^5 + 1681742*x^6 + 174039*x^7 + 195964*x^8 - 103084*x^9 + 28953*x^10 - 4444*x^11 + 140*x^12 + 84*x^13 - 16*x^14 + x^15)/(1-x)^25
...
Thus A(x, y*(1-x)^3)*(1-x) = x + 2*y*x^3 + (5*y^2 - y)*x^4 + (14*y^3 + 3*y^2)*x^5 + (42*y^4 + 49*y^3 - 4*y^2)*x^6 + (132*y^5 + 358*y^4 - 15*y^3 + y^2)*x^7 +...
MATHEMATICA
nmax = 13; A[x_] = x;
Do[A[x_] = x + (y A[x] + (1-y) x) A[y A[x] + (1-y) x] + x O[x]^n // Normal // Expand // Collect[#, x]&, {n, nmax}];
T[n_, k_] := SeriesCoefficient[A[x], {x, 0, n}, {y, 0, k}];
Table[T[n, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Oct 20 2019 *)
PROG
(PARI) {T(n, k) = my(A=x); for(i=1, n, A = x + subst(x*A, x, y*A + (1-y)*x +x*O(x^n)) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=1, 12, for(k=0, n-1, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A088714 (row sums), A291821 (central terms), A291822 (diagonal).
Cf. A277295 (variant).
Sequence in context: A325754 A154974 A342981 * A309124 A078341 A371762
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 01 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 16:19 EDT 2024. Contains 372603 sequences. (Running on oeis4.)