The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290815 Numbers m such that the numerator of Sum_{k=1..m, gcd(k,m) = 1} 1/k is divisible by m^3. 2
1, 39, 78, 155, 310, 465, 546, 793, 798, 930, 1092, 1586, 1638, 1860, 2170, 2379, 2394, 3172, 3276, 3965, 4340, 4758, 4914, 5219, 6045, 6510, 7137, 7182, 7930, 9516, 9828, 10374, 10438, 11102, 11895, 12090, 13020, 14274, 15657, 15860, 16843, 16891, 18135 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A generalization of Wolstenholme primes (A088164) for composite number.
Leudesdorf proved in 1888 that the numerator of Sum_{k=1..n, gcd(k,n)=1} 1/k is divisible by n^2 for all (but not only) numbers n with gcd(n,6)=1, which is a generalization of Wolstenholme's theorem.
Terms that are coprime to 6: 1, 155, 793, 3965, 5219, 16843, 16891, 51305, ...
a(41) = A088164(1) = 16843.
A general conjecture: if, for some e > 0, m^e | Numerator(Sum_{k=1..m, gcd(k,m)=1} 1/k), then m^(e-1) | Numerator(Sum_{k=1..m, gcd(k,m)=1} 1/k^2). Note: in this case, the exponent e = 3. Problem: are there numbers m > 1 such that m^4 | Numerator(Sum_{k=1..m, gcd(k,m)=1} 1/k)? - Thomas Ordowski, Aug 10 2019
This general conjecture was checked up to 10^4. This problem has no solution up to 10^5. - Amiram Eldar, Aug 10 2019
It appears that all odd terms of this sequence are odd numbers m such that the numerator of Sum_{k=1..m, gcd(k,m)=1} 1/k^2 is divisible by m^2. - Thomas Ordowski, Aug 12 2019
REFERENCES
G. H. Hardy and E. M. Wright, Introduction to the theory of numbers, 5th edition, Oxford, England: Clarendon Press, 1979, pp. 100-102.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..174 (terms <= 4*10^5; first 100 terms from Amiram Eldar)
C. Leudesdorf, Some results in the elementary theory of numbers, Proceedings of the London Mathematical Society, Vol. 20 (1888), pp. 199-212.
Eric Weisstein's World of Mathematics, Leudesdorf Theorem.
EXAMPLE
Sum_{k=1..39, gcd(k,39)=1} 1/k = 46855131783993/15222026943200, and 46855131783993 = 39^3 * 789884047, thus 39 is in the sequence.
MATHEMATICA
seqQ[n_] := Module[{}, g[m_] := GCD[n, m] == 1; Divisible[Numerator[Plus @@ (1/Select[Range[n], g])], n^3]]; Select[Range[10^5], seqQ]
PROG
(PARI) isok(n) = numerator(sum(k=1, n, if (gcd(n, k)==1, 1/k))) % n^3 == 0; \\ Michel Marcus, Aug 11 2017
(PARI) upto(n) = {my(v = vector(n), d = divisors(n), res = List(), squarefreepart(n) = factorback(factorint(n)[, 1])); v[1] = 1; for(i = 2, n, v[i] = v[i-1] + 1/i; ); for(j = 1, n, fr = v[j]; d = divisors(squarefreepart(j)); for(i = 2, #d, fr += 1/d[i] * v[j/d[i]] * (-1)^omega(d[i]) ); if(numerator(fr) % j^3 == 0, listput(res, j); ) ); res } \\ David A. Corneth, Aug 23 2019
CROSSREFS
Sequence in context: A044486 A072122 A355852 * A355857 A354227 A063335
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 11 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 04:02 EDT 2024. Contains 372900 sequences. (Running on oeis4.)