The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286432 Numbers of labeled rooted Greg trees (A005264) with n nodes and root degree 2. 1
0, 1, 12, 151, 2545, 54466, 1417318, 43472780, 1536228588, 61466251616, 2746907348768, 135619260805568, 7331022129923648, 430638151053316480, 27315015477709844352, 1860627613021322933248, 135465573609158928964096, 10498038569346091127451136, 862792664850194915870874112 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Numbers of rooted Greg trees with 2 subtrees below root given m labeled nodes (lead index). Among all trees at the same index (see sequence A005264) root bifurcating trees play a central role in philological discourse on the reconstruction of manuscript genealogies. Labeled nodes represent surviving manuscripts, unlabeled nodes hypothetical ones. See also stemmatology/stemmatics, Bédier's paradox.
REFERENCES
J. Bédier. La tradition manuscrite du Lai de l'Ombre: Réflexions sur l'Art d' Éditer les Anciens Textes. Romania 394 (1928), 161-196/321-356.
C. Flight. How many stemmata? Manuscripta 34(2), 1990, 122-128.
W. Hering. Zweispaltige Stemmata. Philologus-Zeitschrift für antike Literatur und ihre Rezeption 111(1-2), (1967), 170-185.
P. Maas. Textkritik. 4. Auflage. Leipzig: Teubner. 1960.
LINKS
Armin Hoenen, S. Eger and R. Gehrke, How many stemmata with root degree k?, Proceedings of MOL 2017, 2017.
FORMULA
T_{m,2} = Sum_{n >= 0} T_{m,n,2}, where T_{m,n,k} = (m/k!) * Sum_{(s,p) in C((m-1,n),k)} (binomial(m-1,s) F(s,p)) + (1/k!) * Sum_{(s,p) in C((m,n-1),k)} (binomial(m,s) F(s,p)), with F(s,p) = Product_{1..k} (g(s_i,p_i)), here g(m,n) = numbers of rooted Greg trees, see (A005264) with m labeled and n unlabeled nodes. s and p are tuples with k elements where each s_i >= 1 and for each p_i : 0 <= p_i < s_i; first term in T_{m,n,k} gives the number of trees with a labeled root, second those for root unlabeled.
EXAMPLE
For n=3, T_{3,2} is T_{3,0,2} + T_{3,1,2} + T_{3,2,2} where T_{3,0,2} = (3/2) * (binomial(2,(1,1)) * product(g(1,0)*g(1,0))) + 0 = 3; T_{3,1,2} = 0 + 1/2 * ((binomial(3,(2,1)) * product(g(2,0)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,0)))) = 6 and T_{3,2,2} = 0 + (1/2) * ((binomial(3,(2,1)) * product(g(2,1)*g(1,0))) + (binomial(3,(1,2)) * product(g(1,0)*g(2,1)))) = 3; 3 + 6 + 3 =12.
CROSSREFS
Cf. A005264, number of labeled rooted Greg trees with n nodes.
Cf. A005263, unrooted Greg trees, according to Flight (1990) can also serve as basis for computation of A005624.
Sequence in context: A293153 A015611 A127650 * A189548 A103759 A351526
KEYWORD
nonn
AUTHOR
Armin Hoenen, May 09 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 14:27 EDT 2024. Contains 372630 sequences. (Running on oeis4.)