The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A285863 Numerators of Bernoulli numbers 3^n*B(n), with B(n) = A027641(n)/A027642(n). 4
1, -3, 3, 0, -27, 0, 243, 0, -2187, 0, 98415, 0, -122408577, 0, 11160261, 0, -51899996619, 0, 5664991530321, 0, -202943637014337, 0, 8938507796555139, 0, -22252066887294301257, 0, 7246946747292751629, 0, -181103830292539169071623 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The denominators are given in A285068.
In general the numbers B(d;n) = d^n*B(n), for n >= 0, have e.g.f. d*x/(exp(d*x) - 1). They are also the exponential convolution of the generalized Bernoulli numbers B[d,a](n), obtained from the generalized Stirling2 numbers S2[d,a], with the sequence {(-a)^n}_{n>=0}. See a comment in A157817 for the B[4,1] and B[4,3] examples.
These numbers B(d;n) and their polynomials B(d;n,x) = Sum_{m=0..n} binomial(n, m)*B(d;n-m)*x^m are used in the generalized so-called Faulhaber formula for the sums of powers of arithmetic progressions defined by SP(d,a;n,m) := Sum_{j=0..m} (a + d*j)^n = Sum_{k=0..n} binomial(n, k)*a^(n-k)*d^k*SP(k,m) with SP(k,m) = SP(1,0;k,m), n >= 0, m >= 0, and 0^0 := 1.
The Faulhaber formula is: SP(d,a;n,m) = (1/(d*(n+1)))*[B(d;n+1,x = a+d*(m+1)) - B(d;n+1,x = d) - B(d;n+1,x = a) + B(d;n+1,x=0) + d^(n+1)*[n=0]]. Here [n=0] is the Kronecker delta_{n,0} symbol: 1 if n=0 and 0 otherwise.
A simpler version of the Faulhaber formula is for a=0: SP(d,0;0,m) = m+1 and SP(d,0;n,m) = d^n*(1/(n+1))*(B(n+1, x = m+1) - B(n+1, x=1)) for n >= 1, and for a an integer >= 1: Sum_{k=0..n} binomial(n, k)*a^(n-k) * d^k * (1/(k+1)) * (B(k+1, x=m+1) - B(k+1, x=1)). Here B(n, x) = B(1;n,x) are the usual Bernoulli polynomials from A196838/A196839 or A053382/A053383.
LINKS
FORMULA
a(n) = numerator(r(n)) with r(n) = 3^n*A027641(n)/A027642(n), n >= 0.
E.g.f. {r(n)}_{n>=0}: 3*x/(exp(3*x) - 1).
MAPLE
seq(numer(3^n*bernoulli(n)), n=0..28); # Peter Luschny, Jul 17 2017
MATHEMATICA
Table[Numerator[3^n*BernoulliB[n]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
PROG
(Python)
from sympy import bernoulli
def a(n): return (3**n * bernoulli(n)).numerator()
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
(PARI) a(n) = numerator(3^n * bernfrac(n)); \\ Ruud H.G. van Tol, Jan 31 2024
CROSSREFS
Sequence in context: A309012 A137259 A166553 * A111843 A119537 A338148
KEYWORD
sign,easy,frac
AUTHOR
Wolfdieter Lang, Apr 29 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 19:55 EDT 2024. Contains 372919 sequences. (Running on oeis4.)