The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284553 Prime factorization representation of Stern polynomials B(n,x) with only the even powers of x present: a(n) = A247503(A260443(n)). 4

%I #33 Sep 09 2017 19:22:16

%S 1,2,1,2,5,2,5,10,1,10,25,10,5,50,5,10,11,10,25,250,5,250,125,50,11,

%T 250,25,250,55,50,55,110,1,110,275,250,55,6250,125,1250,121,1250,625,

%U 31250,55,6250,1375,550,11,2750,275,6250,605,6250,1375,13750,11,2750,3025,2750,55,6050,55,110,17,110,275,30250,55,68750,15125,13750,121

%N Prime factorization representation of Stern polynomials B(n,x) with only the even powers of x present: a(n) = A247503(A260443(n)).

%C a(n) = Prime factorization representation of Stern polynomials B(n,x) where the coefficients of odd powers of x are replaced by zeros. In other words, only the constant term and other terms with even powers of x are present. See the examples.

%C Proof that A001222(a(1+n)) matches _Ralf Stephan_'s formula for A000360(n): Consider functions A001222(a(n)) and A001222(A284554(n)) (= A284556(n)). They can be reduced to the following mutual recurrence pair: b(0) = 0, b(1) = 1, b(2n) = c(n), b(2n+1) = b(n) + b(n+1) and c(0) = c(1) = 0, c(2n) = b(n), c(2n+1) = c(n) + c(n+1). From the definitions it follows that the difference b(n) - c(n) for even n is b(2n) - c(2n) = -(b(n) - c(n)), and for odd n, b(2n+1) - c(2n+1) = (b(n)+b(n+1))-(c(n)+c(n+1)) = (b(n)-c(n)) + (b(n+1)-c(n+1)). Then by induction, if we assume that for 3n, 3n+1, 3n+2, ..., 6n, the value of difference b(n)-c(n) is always [0, +1, -1; repeated], it follows that from 6n to 12n the differences are [0, +1, -1; 0, +1, -1; repeated], which proves that b(n) - c(n) = A102283(n). As an implication, recurrence b can be defined without referring to c as: b(0) = 0, b(1) = 1, b(2n) = b(n) - A102283(n), b(2n+1) = b(n)+b(n+1), and this is equal to _Ralf Stephan_'s Oct 05 2003 formula for A000360, but shifted once right, with prepended zero.

%H Antti Karttunen, <a href="/A284553/b284553.txt">Table of n, a(n) for n = 0..8192</a>

%H S. Klavzar, U. Milutinovic and C. Petr, <a href="http://dx.doi.org/10.1016/j.aam.2006.01.003">Stern polynomials</a>, Adv. Appl. Math. 39 (2007) 86-95.

%F a(0) = 1, a(1) = 2, a(2n) = A003961(A284554(n)), a(2n+1) = a(n)*a(n+1).

%F Other identities. For all n >= 0:

%F a(n) = A247503(A260443(n)).

%F a(n) = A260443(n) / A284554(n).

%F a(n) = A064989(A284554(2n)).

%F A001222(a(1+n)) = A000360(n). [Proof in Comments section.]

%e n A260443(n) Stern With odd powers

%e prime factorization polynomial of x cleared -> a(n)

%e ------------------------------------------------------------------------

%e 0 1 (empty) B_0(x) = 0 0 | 1

%e 1 2 p_1 B_1(x) = 1 1 | 2

%e 2 3 p_2 B_2(x) = x 0 | 1

%e 3 6 p_2 * p_1 B_3(x) = x + 1 1 | 2

%e 4 5 p_3 B_4(x) = x^2 x^2 | 5

%e 5 18 p_2^2 * p_1 B_5(x) = 2x + 1 1 | 2

%e 6 15 p_3 * p_2 B_6(x) = x^2 + x x^2 | 5

%e 7 30 p_3 * p_2 * p_1 B_7(x) = x^2 + x + 1 x^2 + 1 | 10

%e 8 7 p_4 B_8(x) = x^3 0 | 1

%e 9 90 p_3 * p_2^2 * p_1 B_9(x) = x^2 + 2x + 1 x^2 + 1 | 10

%e 10 75 p_3^2 * p_2 B_10(x) = 2x^2 + x 2x^2 | 25

%t a[n_] := a[n] = Which[n < 2, n + 1, EvenQ@ n, Times @@ Map[#1^#2 & @@ # &, FactorInteger[#] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[# == 1] &@ a[n/2], True, a[#] a[# + 1] &[(n - 1)/2]]; Table[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &@ a@ n, {n, 0, 72}] (* _Michael De Vlieger_, Apr 05 2017 *)

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From _Michel Marcus_

%o A260443(n) = if(n<2, n+1, if(n%2, A260443(n\2)*A260443(n\2+1), A003961(A260443(n\2)))); \\ Cf. _Charles R Greathouse IV_'s code for "ps" in A186891 and A277013.

%o A247503(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 2] *= (primepi(f[i, 1]) % 2); ); factorback(f); } \\ After _Michel Marcus_

%o A284553(n) = A247503(A260443(n));

%o (Scheme) (define (A284553 n) (A247503 (A260443 n)))

%Y Cf. A000360, A001222, A003961, A064989, A102283, A247503, A260443, A284554, A284556, A284563 (odd bisection).

%K nonn

%O 0,2

%A _Antti Karttunen_, Mar 29 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 07:28 EDT 2024. Contains 372850 sequences. (Running on oeis4.)