The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282252 Exponential Riordan array [Bessel_I(0,2*x)^2, x]. 3
1, 0, 1, 4, 0, 1, 0, 12, 0, 1, 36, 0, 24, 0, 1, 0, 180, 0, 40, 0, 1, 400, 0, 540, 0, 60, 0, 1, 0, 2800, 0, 1260, 0, 84, 0, 1, 4900, 0, 11200, 0, 2520, 0, 112, 0, 1, 0, 44100, 0, 33600, 0, 4536, 0, 144, 0, 1, 63504, 0, 220500, 0, 84000, 0, 7560, 0, 180, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Bessel_I(0,2*x) = Sum_{n >= 0} binomial(2*n,n)*x^(2*n)/(2*n)! is a modified Bessel function of the first kind.
Consider the infinite 2-dimensional square lattice Z x Z with an oriented self-loop at each vertex. Then the triangle entry T(n,k) equals the number of walks of length n from the origin to itself having k loops. An example is given below.
See A069466 for walks an infinite 2-dimensional square lattice without self-loops.
This is the square of triangle A109187, whose entries give the number of walks of length n from a vertex to itself having k loops on a 1-dimensional integer lattice with an oriented self-loop at each vertex.
A109187 is the exponential Riordan array [Bessel_I(0,2*x), x]. Note that Bessel_I(0,2*x)^2 = (Sum_{n >= 0} binomial(2*n,n)* x^(2*n)/(2*n)!)^2 = Sum_{n >= 0} binomial(2*n,n)^2*x^(2*n) /(2*n)!.
LINKS
FORMULA
T(n,k) = binomial(n,k)*binomial(n-k,floor((n-k)/2))^2*(1 + (-1)^(n-k))/2.
T(n,n-2*k) = n/(n - 2*k)*T(n-1,n-2*k-1).
T(n,k) = the coefficient of t^k in the expansion of (t + X + 1/X + Y + 1/Y)^n.
T(n,k) = 1/Pi^2 * Integral_{y = 0..Pi} Integral_{x = 0..Pi} ( t + 2*cos(x) + 2*cos(y) )^n dx dy.
E.g.f.: exp(x*t)*Bessel_I(0,2*x)^2 = 1 + t*x + (4 + t^2)*x^2/2! + (12*t + t^3)*x^3/3! + (36 + 24*t^2 + t^4)*x^4/4! + ....
The n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)^2 * t^(n-2*k).
Recurrence: n^2*R(n,t) = t*(3*n^2 - 3*n + 1)*R(n-1,t) + (16 - 3*t^2)*(n - 1)^2*R(n-2,t) + t*(t^2 - 16)*(n - 1)*(n - 2)*R(n-3,t) with R(0,t) = 1, R(1,t) = t and R(2,t) = 4 + t^2.
d/dt(R(n,t)) = n*R(n-1,t).
The zeros of the row polynomials appear to lie on the imaginary axis in the complex plane. Also, the zeros of R(n,t) and R(n+1,t) appear to interlace on the imaginary axis.
EXAMPLE
The triangle begins
1;
0, 1;
4, 0, 1;
0, 12, 0, 1;
36, 0, 24, 0, 1;
0, 180, 0, 40, 0, 1;
400, 0, 540, 0, 60, 0, 1;
...
T(3,1) = 12: on the square lattice, let L, R, U, D denote a left step, right step, up step and down step respectively. The 12 walks of length 3 containing a single loop are
loop L R, loop R L, loop U D, loop D U,
L loop R, R loop L, U loop D, D loop U,
L R loop, R L loop, U D loop, D U loop.
The infinitesimal generator of this array has integer entries and begins
0;
0, 0;
4, 0, 0;
0, 12, 0, 0;
-12, 0, 24, 0, 0;
0, -60, 0, 40, 0, 0;
160, 0, -180, 0, 60, 0, 0;
0, 1120, 0, -420, 0, 84, 0, 0;
-4620, 0, 4480, 0, -840, 0, 112, 0, 0;
...
It is the generalized exponential Riordan array [ 2*log(Bessel_I(0,2*x)), x ].
MAPLE
T := (n, k) -> (1/2)*binomial(n, k)*binomial(n-k, floor((1/2)*n-(1/2)*k))^2*(1+(-1)^(n-k)):
seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
Table[Binomial[n, k] Binomial[n - k, Floor[(n - k)/2]]^2*(1 + (-1)^(n - k))/2, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 12 2017 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n, k)*binomial(n-k, floor((n-k)/2))^2*(1 + (-1)^(n-k))/2, ", "))) \\ G. C. Greubel, Aug 16 2017
CROSSREFS
A201805 gives row sums. Cf. A069466, A109187.
Sequence in context: A372722 A271424 A117435 * A268367 A117436 A136448
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Bala, Feb 12 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 17:25 EDT 2024. Contains 373224 sequences. (Running on oeis4.)