The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279686 Numbers that are the least integer of a prime tower factorization equivalence class (see Comments for details). 4
1, 2, 4, 6, 8, 12, 16, 18, 30, 36, 40, 48, 60, 64, 72, 81, 90, 108, 144, 162, 180, 192, 200, 210, 225, 240, 256, 280, 320, 324, 360, 405, 420, 432, 450, 500, 512, 540, 576, 600, 630, 648, 720, 768, 810, 900, 960, 1260, 1280, 1296, 1350, 1400, 1536, 1575, 1600 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The prime tower factorization of a number is defined in A182318.
We say that two numbers, say n and m, belong to the same prime tower factorization equivalence class iff there is a permutation of the prime numbers, say f, such that replacing each prime p by f(p) in the prime tower factorization of n leads to m.
The notion of prime tower factorization equivalence class can be seen as a generalization of the notion of prime signature; thereby, this sequence can be seen as an equivalent of A025487.
This sequence contains all primorial numbers (A002110).
This sequence contains A260548.
This sequence contains the terms > 0 in A014221.
If n appears in the sequence, then 2^n appears in the sequence.
If n appears in the sequence and k>=0, then A002110(k)^n appears in the sequence.
With the exception of term 1, this sequence contains no term from A182318.
Odd numbers appearing in this sequence: 1, 81, 225, 405, 1575, 2025, 2835, 6125, 10125, 11025, 14175, 15625, 16875, 17325, 31185, 33075, 50625, 67375, 70875, 99225, ...
Here are some prime tower factorization equivalence classes:
- Class 1: the number one (the only finite equivalence class),
- Class p: the prime numbers (A000040),
- Class p*q: the squarefree semiprimes (A006881),
- Class p^p: the numbers of the form p^p with p prime (A051674),
- Class p^q: the numbers of the form p^q with p and q distinct primes,
- Class p*q*r: the sphenic numbers (A007304),
- Class p*q*r*s: the products of four distinct primes (A046386),
- Class p*q*r*s*t: the products of five distinct primes (A046387),
- Class p*q*r*s*t*u: the products of six distinct primes (A067885).
LINKS
Roberto Conti and Pierluigi Contucci, A Natural Avenue, arXiv:2204.08982 [math.NT], 2022.
EXAMPLE
2 is the least number of the form p with p prime, hence 2 appears in the sequence.
6 is the least number of the form p*q with p and q distinct primes, hence 6 appears in the sequence.
72 is the least number of the form p^q*q^p with p and q distinct primes, hence 72 appears in the sequence.
36000 is the least number of the form p^q*q^r*r^p with p, q and r distinct primes, hence 36000 appears in the sequence.
CROSSREFS
Sequence in context: A322492 A332276 A317246 * A219653 A050622 A082662
KEYWORD
nonn
AUTHOR
Rémy Sigrist, Dec 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 10:07 EDT 2024. Contains 372532 sequences. (Running on oeis4.)