The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278080 Expansion of e.g.f. (1/4!)*sin^4(x)/cos(x) (coefficients of even powers only). 6

%I #20 Mar 01 2023 11:00:43

%S 0,0,1,-5,126,1490,118151,8256885,808428076,100199284180,

%T 15432169163901,2889536106161375,646438926423519626,

%U 170294687860735726470,52177485058722877649251,18397662218707151323777465,7396641315814156362154666776

%N Expansion of e.g.f. (1/4!)*sin^4(x)/cos(x) (coefficients of even powers only).

%C This sequence gives the coefficients in an asymptotic expansion of a series related to the constant Pi. It can be shown that (1/4!)*Pi/4 = Sum_{k >= 1} (-1)^(k-1)/((2*k - 5)*(2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)). Using Proposition 1 of Borwein et al. it can be shown that the following asymptotic expansion holds for the tails of the series: for N divisible by 4, 2*( (1/4!)*Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/((2*k - 5)*(2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)) ) ~ 1/N^5 - (-5)/N^7 + 126/N^9 - 1490/N^11 + 118151/N^13 - .... An example is given below. Cf. A024235 and A278195.

%H J. M. Borwein, P. B. Borwein, K. Dilcher, <a href="http://www.jstor.org/stable/2324715">Pi, Euler numbers and asymptotic expansions</a>, Amer. Math. Monthly, 96 (1989), 681-687.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPolynomial.html">Euler Polynomial</a>.

%F a(n) = [x^(2*n)/(2*n)!] ( (1/4!)*sin^4(x)/cos(x) ).

%F a(n) = (1/4!)*( A000364(n) + (-1)^n*(9^(n) - 5)/4 ).

%F a(n) = (-1)^n/(2^4*4!) * 2^(2*n)*( E(2*n,5/2) - 4*E(2*n,3/2) + 6*E(2*n,1/2) - 4*E(2*n,-1/2) + E(2*n,-3/2) ), where E(n,x) is the Euler polynomial of order n.

%F E.g.f. (1/4!)*sin^4(x)/cos(x) = x^4/4! - 5*x^6/6! + 126*x^8/8! + 1490*x^10/10! + ....

%F O.g.f. for a signed version of the sequence: Sum_{n >= 0} ( (1/2^n) * Sum_{k = 0..n} (-1)^k*binomial(n, k)/((1 - (2*k - 3)*x)*(1 - (2*k - 1)*x)*(1 - (2*k + 1)*x)*(1 - (2*k + 3)*x)*(1 - (2*k + 5)*x)) ) = 1 + 5*x^2 + 126*x^4 - 1490*x^6 + 118151*x^8 - ....

%e Let N = 100000. The truncated series 2*Sum_{k = 1..N/2} (-1)^(k-1)/((2*k - 5)*(2*k - 3)*(2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.065449846949787359134638(3)038183229(2)6754107(569)820314(8536)0364.... The bracketed digits show where this decimal expansion differs from that of Pi/48. The numbers 1, 5, 126, -1490 must be added to the bracketed numbers to give the correct decimal expansion to 60 digits: Pi/48 = 0.065449846949787359134638(4) 038183229(7)6754107(695)820314(7046)0364.. ..

%p A000364 := n -> abs(euler(2*n)):

%p seq(1/4!*(A000364(n) + (-1)^n*(9^n - 5)/4), n = 0..20);

%Y Cf. A000364, A004174, A024235, A166984, A278079, A278194, A278195.

%K sign,easy

%O 0,4

%A _Peter Bala_, Nov 10 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 15:44 EDT 2024. Contains 372603 sequences. (Running on oeis4.)