The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275754 G.f. A(x) satisfies: 1 = ...(((((A(x) - x)^(1/2) - x^2)^(1/3) - x^3)^(1/4) - x^4)^(1/5) - x^5)^(1/6) -...- x^n)^(1/(n+1)) -..., an infinite series of nested n-th roots. 3
1, 1, 2, 6, 25, 126, 759, 5280, 41922, 374348, 3718632, 40687982, 486272963, 6302207628, 88028389880, 1318140365566, 21062423444982, 357696122160256, 6433377303116791, 122156160094379094, 2441860821816085218, 51257318297766697640, 1127262952173081139014, 25919345794724305427250, 621907163139705123859022, 15544308709055844154008420, 404076225273612078440996928, 10908274705160761799960317228 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Limit a(n)/n! = 1.
LINKS
FORMULA
a(n) ~ n! * (1 + 1/n^2 + 6/n^3 + 39/n^4 + 295/n^5 + 2601/n^6 + 26384/n^7 + 303669/n^8 + 3918008/n^9 + 56085221/n^10 + ...), for coefficients see A289996. - Vaclav Kotesovec, Sep 03 2017
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 126*x^5 + 759*x^6 + 5280*x^7 + 41922*x^8 + 374348*x^9 + 3718632*x^10 +...
Illustration of definition.
Start with R1 = A(x), and proceed as follows:
R2 = (R1 - x^1)^(1/2) = 1 + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 363*x^6 + 2544*x^7 +...
R3 = (R2 - x^2)^(1/3) = 1 + x^3 + 4*x^4 + 20*x^5 + 120*x^6 + 840*x^7 +...
R4 = (R3 - x^3)^(1/4) = 1 + x^4 + 5*x^5 + 30*x^6 + 210*x^7 + 1680*x^8 +...
R5 = (R4 - x^4)^(1/5) = 1 + x^5 + 6*x^6 + 42*x^7 + 336*x^8 + 3024*x^9 +...
R6 = (R5 - x^5)^(1/6) = 1 + x^6 + 7*x^7 + 56*x^8 + 504*x^9 + 5040*x^10 +...
R7 = (R6 - x^6)^(1/7) = 1 + x^7 + 8*x^8 + 72*x^9 + 720*x^10 + 7920*x^11 +...
R8 = (R7 - x^7)^(1/8) = 1 + x^8 + 9*x^9 + 90*x^10 + 990*x^11 + 11880*x^12 +...
R9 = (R8 - x^8)^(1/9) = 1 + x^9 + 10*x^10 + 110*x^11 + 1320*x^12 + 17160*x^13 +...
etc., to approach the value 1 as a limit.
Generating Method.
The g.f. may be attained as a limit of the following process.
Start with 1, add x^n and raise that result to the n power, add x^(n-1) and raise that result to the (n-1) power, and continue until you reach x^1 to approximate the g.f. A(x).
For example, say n = 6, then start with S = 1 and work backwards like so:
S = (S + x^6)^6 = 1 + 6*x^6 + 15*x^12 +...
S = (S + x^5)^5 = 1 + 5*x^5 + 30*x^6 + 10*x^10 + 120*x^11 +...
S = (S + x^4)^4 = 1 + 4*x^4 + 20*x^5 + 120*x^6 + 6*x^8 + 60*x^9 + 550*x^10 +...
S = (S + x^3)^3 = 1 + 3*x^3 + 12*x^4 + 60*x^5 + 363*x^6 + 24*x^7 + 186*x^8 +...
S = (S + x^2)^2 = 1 + 2*x^2 + 6*x^3 + 25*x^4 + 126*x^5 + 759*x^6 + 240*x^7 +...
S = (S + x)^1 = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 126*x^5 + 759*x^6 + 240*x^7 +...
which agrees with A(x) up to the coefficient of x^6.
RELATED SERIES.
Log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 75*x^4/4 + 486*x^5/5 + 3639*x^6/6 + 30437*x^7/7 + 283675*x^8/8 + 2913520*x^9/9 + 32744938*x^10/10 + 399922799*x^11/11 + 5276272191*x^12/12 + 74800085777*x^13/13 + 1134180192743*x^14/14 +...
PROG
(PARI) {a(n) = my(A=1); for(k=1, n, A = A^(n+2-k) + x^(n+1-k) +x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A); if( n<1, n==0, A = n + O(x); n--; forstep(k=n, 1, -1, A = ((1 + x^k * (1 + x * A))^k - 1) / x^k); polcoeff(A, n))}; /* Michael Somos, May 16 2018 */
CROSSREFS
Sequence in context: A188687 A030859 A030877 * A030883 A030899 A030907
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 16 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 17:14 EDT 2024. Contains 373102 sequences. (Running on oeis4.)