The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275047 Diagonal of the rational function 1/(1-(1+w)(xy + xz + yz)) [even-indexed terms only]. 4
1, 18, 1350, 141120, 17151750, 2272538268, 318430816704, 46404203788800, 6961609406993670, 1068002895589987500, 166779781860762170100, 26422986893371642828800, 4236593267629481817240000, 686167053247777413372681600, 112093956900827388909570240000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Odd-order terms are zero since R(x,y,z,w) = R(-x,-y,-z,w), where R(x,y,z,w) = 1/(1-(1+w)*(x*y + x*z + y*z)).
From Peter Bala, Jun 22 2023: (Start)
a(n) = A(n,n,2*n,2*n) (= A(2*n,2*n,n,n)) in the notation of Straub, equation 8, where it is shown that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. This also follows from Meštrović equation 39, since a(n) = binomial(3*n,n)^2 * binomial(2*n,n).
Inductively define a family of sequences {a(i,n) : n >= 0}, i >= 1, by setting a(1,n) = a(n) and, for i >= 2, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n.
We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5, and positive integers n and r. Cf. A362725 and A362732. (End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..444 (first 34 terms from Gheorghe Coserea)
A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
0 = (-4*x^2+729*x^4)*y'''' + (-20*x+7290*x^3)*y''' + (-16+18063*x^2)*y'' + 10449*x*y' + 576*y, where y = 1 + 18*x^2 + 1350*x^4 + ...
From Vaclav Kotesovec, Aug 03 2016: (Start)
a(n) = (3*n)!^2 / (n!^4 * (2*n)!).
a(n) ~ 3^(6*n+1) / (Pi^(3/2) * n^(3/2) * 2^(2*n+2)).
(End)
G.f.: 4F3(1/3,1/3,2/3,2/3;1/2,1,1;729x/4). - Benedict W. J. Irwin, Aug 05 2016
From Peter Bala, Sep 20 2021: (Start)
a(n) = 9*(3*n - 1)^2*(3*n - 2)^2/(2*n^3*(2*n - 1))*a(n-1).
a(n) = Sum_{k = n..3*n} (-1)^k*binomial(3*n,k)^2*binomial(k,n)^2. (End)
From Peter Bala, Jun 22 2023: (Start)
a(n) = binomial(3*n,n)^2 * binomial(2*n,n) = A188662(n) * A000984(n).
a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(2*n,k)*binomial(2*n-k,n)* binomial(4*n-k,2*n).
a(n) = [(x*y)^n * (z*t)^(2*n)] 1/((1 - x - y)*(1 - z - t) - x*y*z*t). (End)
EXAMPLE
1 + 18*x^2 + 1350*x^4 + 141120*x^6 + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
9*(3*n-1)^2*(3*n-2)^2*a(n-1)/((4*n-2)*n^3))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
MATHEMATICA
Table[(3*n)!^2 / (n!^4*(2*n)!), {n, 0, 20}] (* Vaclav Kotesovec, Aug 03 2016 *)
CoefficientList[Series[HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1/2, 1, 1}, 729x/4], {x, 0, 10}], x] (* Benedict W. J. Irwin, Aug 05 2016 *)
PROG
(PARI)
my(x='x, y='y, z='z, w='w);
R = 1/(1-(1+w)*(x*y+x*z+y*z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(23, R, [x, y, z, w])
CROSSREFS
Sequence in context: A252969 A182286 A292609 * A160252 A276015 A210823
KEYWORD
nonn,easy
AUTHOR
Gheorghe Coserea, Jul 18 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 15:45 EDT 2024. Contains 372554 sequences. (Running on oeis4.)