The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274105 Triangle read by rows: T(n,k) = number of configurations of k non-attacking bishops on the black squares of an n X n chessboard (0 <= k < n for n > 1). 9
1, 1, 1, 2, 1, 5, 4, 1, 8, 14, 4, 1, 13, 46, 46, 8, 1, 18, 98, 184, 100, 8, 1, 25, 206, 674, 836, 308, 16, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 41, 612, 4196, 13756, 20476, 11896, 1912, 32, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Rows give the coefficients of the independence polynomial of the n X n black bishop graph. - Eric W. Weisstein, Jun 26 2017
LINKS
Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. See Section 9.
Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. See Section 9. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Black Bishop Graph
Eric Weisstein's World of Mathematics, Independence Polynomial
EXAMPLE
Triangle begins:
1, 1,
1, 2,
1, 5, 4,
1, 8, 14, 4,
1, 13, 46, 46, 8,
1, 18, 98, 184, 100, 8,
1, 25, 206, 674, 836, 308, 16,
1, 32, 356, 1704, 3532, 2816, 632, 16,
1, 41, 612, 4196, 13756, 20476, 11896, 1912, 32,
1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32,
1, 61, 1440, 16940, 106772, 361780, 629336, 506600, 154256, 11600, 64,
...
Corresponding independence polynomials:
1+x, (K_1)
1+2*x, (P_2 = K_2)
1+5*x+4*x^2, (butterfly graph)
1+8*x+14*x^2+4*x^3,
...
MAPLE
with(combinat);
T:=n->add(stirling2(n+1, n+1-k)*x^k, k=0..n);
# bishops on black squares
bish:=proc(n) local m, k, i, j, t1, t2; global T;
if (n mod 2) = 0 then m:=n/2;
t1:=add(binomial(m, k)*T(2*m-1-k)*x^k, k=0..m);
else
m:=(n-1)/2;
t1:=add(binomial(m+1, k)*T(2*m-k)*x^k, k=0..m+1);
fi;
seriestolist(series(t1, x, 2*n+1));
end;
for n from 1 to 12 do lprint(bish(n)); od:
MATHEMATICA
CoefficientList[Table[Sum[x^n Binomial[Ceiling[n/2], k] BellB[n - k, 1/x], {k, 0, Ceiling[n/2]}], {n, 10}], x] (* Eric W. Weisstein, Jun 26 2017 *)
CROSSREFS
Alternate rows give A088960.
Row sums are A216332(n+1) for n>1.
Cf. A274106 (white squares), A288183, A201862, A002465.
Sequence in context: A345454 A271684 A194682 * A366156 A056242 A343960
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Jun 14 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 18:40 EDT 2024. Contains 372522 sequences. (Running on oeis4.)