The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273873 Number of strict trees of weight n. 67

%I #29 May 09 2021 07:56:48

%S 1,1,2,3,6,12,28,65,166,412,1076,2806,7524,20020,54744,148417,410078,

%T 1126732,3144500,8728570,24555900,68713420,194469616,548088278,

%U 1559301428,4418131108,12628267512,35957541462,103150588492,294924202032,848878072440,2435729999665

%N Number of strict trees of weight n.

%C A strict tree t is either (case 1) a positive integer t = n, or (case 2) a set t = {t1, t2, ..., tk} of two or more strict trees (i.e. branches) with distinct weights, where the weight of a strict tree in the second case is the sum of the weights of its branches; hence the multiset of weights is a strict integer partition of n. For example, {{{{{2,1},1},2},3},{4,{2,1}},{2,1},1} is a strict tree of weight 20.

%H Alois P. Heinz, <a href="/A273873/b273873.txt">Table of n, a(n) for n = 1..2000</a>

%H H. Gingold and A. Knopfmacher, <a href="http://dx.doi.org/10.4153/CJM-1995-062-9">Analytic properties of power product expansions</a>, Canad. J. Math. 47(1995), 1219-1239

%H Gus Wiseman, <a href="https://docs.google.com/document/d/1m0s6DGTBkDW9gvMuFmJHvy6oLGRAbQ7okAZcOPZawp0/pub">Comcategories and Multiorders</a>, <a href="http://www.nafindix.com/math/academic/ComcategoriesandMultiordersv7.pdf">(pdf version)</a>

%H Gus Wiseman, <a href="/A273873/a273873.png">All strict trees n=1..6.</a>

%F Sum_{g(t)=y} (-1)^{d(t)} = mu(|y|<={y_1,...,y_k}), where mu is the Mobius function of the multiorder of integer partitions, g(t) is the multiset of leaves of a strict tree t, and d(t) is the number of branchings.

%F Strict trees are closely related to the coefficients appearing in a(i) = Sum_y c(y_1)*...*c(y_k) where Sum_i c(i)*x^i = Prod_i (1 + a(i)*x^i). The latter identity is the formal power product expansion (PPE) of an (ordinary) generating function.

%e a(6) = 12: {6, (51), (42), ((41)1), (321), ((31)2), ((32)1), (((31)1)1), ((21)21), (((21)1)2), (((21)2)1), ((((21)1)1)1)}.

%p b:= proc(n, i) option remember; `if`(i*(i+1)/2<n, 0,

%p `if`(n=0, 1, b(n, i-1)+b(n-i, min(n-i, i-1))*a(i)))

%p end:

%p a:= n-> 1+b(n, n-1):

%p seq(a(n), n=1..35); # _Alois P. Heinz_, Jun 02 2016

%t STE[n_Integer?Positive]:=STE[n]=1+Plus@@Map[Function[ptn,Times@@STE/@ptn],Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&]];

%t Array[STE,30]

%t (* Second program: *)

%t b[n_, i_] := b[n, i] = If[i(i + 1)/2 < n, 0,

%t If[n == 0, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]] a[i]]];

%t a[n_] := If[n == 0, 1, 1 + b[n, n - 1]];

%t a /@ Range[35] (* _Jean-François Alcover_, May 09 2021, after _Alois P. Heinz_ *)

%o (PARI) seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)), n)); v} \\ _Andrew Howroyd_, Aug 26 2018

%Y Cf. A196545 (weakly ordered plane trees); A220418, A220420 (power product expansions); A271619, A063834 (twice partitioned numbers), A289501.

%K nonn

%O 1,3

%A _Gus Wiseman_, Jun 01 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)