The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273346 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having area k (n>=2, k>=1). 4
1, 0, 2, 0, 0, 4, 1, 0, 0, 0, 7, 4, 2, 0, 0, 0, 0, 12, 9, 9, 4, 1, 0, 0, 0, 0, 0, 21, 18, 22, 18, 12, 4, 2, 0, 0, 0, 0, 0, 0, 37, 37, 47, 45, 46, 29, 20, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 65, 76, 103, 100, 116, 100, 89, 60, 43, 24, 12, 4, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,3
COMMENTS
Number of entries in row n is floor(n^2/4) = A002620(n).
Sum of entries in row n = A082582(n).
Sum(k*T(n,k),k>=1) = A273347(n).
Sum(T(n,k), n>=2) = 2^{n-1}.
Sum(n*T(n,k), n>=2) = A273348(k) = (15k2^k+29*2^k-2(-1)^k-18)/36.
REFERENCES
A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
M. Bousquet-Mélou and R. Brak, Exactly solved models of polyominoes and polygons, Chapter 3 of Polygons, Polyominoes and Polycubes, Lecture Notes in Physics, Vol. 775, 43-78, Springer, Berlin, Heidelberg 2009.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: G(t,z), where t marks area and z marks semiperimeter, is given in the Maple program; it is obtained from eq. (2.14) of the Blecher et al reference by setting x=z, y=z, q=t.
EXAMPLE
Row 4 is 0,0,4,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the corresponding areas are 3,3,3,4,3.
Triangle starts
1;
0, 2;
0, 0, 4, 1;
0, 0, 0, 7, 4, 2;
0, 0, 0, 0, 12, 9, 9, 4, 1;
MAPLE
p:= proc(z, q, n) options operator, arrow: product(1-z*q^(k-1), k = 1 .. n) end proc: G := z*(sum(z^(i+1)*(z-1)^i*t^binomial(i+2, 2)/(p(t, t, i)*p(z*t, t, i+1)), i = 0 .. 20))/(1-(sum(z^(i+1)*(z-1)^i*t^binomial(i+2, 2)/(p(t, t, i+1)*p(z*t, t, i)), i = 0 .. 20))): Gser := simplify(series(G, z=0, 15)): for n from 2 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 14 do seq(coeff(P[n], t, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t) option remember; expand(`if`(n=0, 1-t,
`if`(t<0, 0, b(n-1, y+1, 1))+ `if`(t>0 or y<2, 0,
b(n, y-1, -1))+ `if`(y<1, 0, b(n-1, y, 0)*z^y)))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2)):
seq(T(n), n=2..14); # Alois P. Heinz, Jun 04 2016
MATHEMATICA
b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1-t, If[t<0, 0, b[n-1, y+1, 1]] + If[t>0 || y<2, 0, b[n, y-1, -1]] + If[y<1, 0, b[n-1, y, 0]*z^y]]]; T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 14}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A323412 A349354 A354352 * A369731 A136334 A155039
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 03 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 02:33 EDT 2024. Contains 372666 sequences. (Running on oeis4.)