The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271231 Expansion of the modular cusp form ( eta(q^4) * eta(q^12) )^4 / ( eta(q^2) * eta(q^6) * eta(q^8) * eta(q^24) ), where eta is Dedekind's eta function. 6
0, 1, 0, 1, 0, -2, 0, 0, 0, 1, 0, -4, 0, -2, 0, -2, 0, 2, 0, 4, 0, 0, 0, 8, 0, -1, 0, 1, 0, 6, 0, -8, 0, -4, 0, 0, 0, 6, 0, -2, 0, -6, 0, -4, 0, -2, 0, 0, 0, -7, 0, 2, 0, -2, 0, 8, 0, 4, 0, -4, 0, -2, 0, 0, 0, 4, 0, 4, 0, 8, 0, -8, 0, 10, 0, -1, 0, 0, 0, 8, 0, 1, 0, 4, 0, -4, 0, 6, 0, -6, 0, 0, 0, -8, 0, -8, 0, 2, 0, -4, 0, -18, 0, -16 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
The modularity pattern of the elliptic curve y^2 = x^3 + x^2 + x considered modulo prime(m) is seen from a(prime(m)) = prime(m) - N(prime(m)) = A271230(m), where N(prime(m))= A271229(m) is the number of solutions of this congruence. That is, the p-defect coincides with the prime indexed expansion coefficient (here for all primes).
This modular cusp form of weight 2 and level N = 48 = 2^4*3 is Nr. 54 in Martin's Table 1 (corrected by giving the 24 the missing exponent -1). See also the Michael Somos link where this correction has been observed.
This modular cusp form is a simultaneous eigenform of every Hecke operators T_p, with p a prime not 2 or 3 (bad primes) with eigenvalue lambda(p) = a(p). (See the Martin reference, Proposition 33, p. 4851.)
In the Martin and Ono reference, p. 3173 (Theorem 2), this cusp form appears (in the corrected version) in the row Conductor 48, and it is there related to the elliptic curve y^2 = x^3 + x^2 - 4*x - 4. The p-defects of this curve coincide with the ones of the curve y^2 = x^3 + x^2 + x modulo primes p given in A271230. - Wolfdieter Lang, Apr 21 2016
Multiplicative. See A159819 for formula. - Andrew Howroyd, Aug 06 2018
LINKS
Y. Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
FORMULA
a(2*n+1) = A159819(n), a(2*n) = 0.
O.g.f.: Expansion in q = exp(2*Pi*i*z) with Im(z) > 0 of (eta(4*z)*eta(12*z))^4 / (eta(2*z)*eta(6*z)*eta(8*z)*eta(24*z)), where eta(z) = q^(1/24)*Product_{n >= 1} (1 - q^n) is the Dedekind function with q = q(z) given above, and i is the imaginary unit.
a(prime(m)) = A271230(m), m >= 1.
EXAMPLE
n=2: a(2) = A271230(1) = 0.
n=5: a(5) = A271230(3) = -2.
See the example section of A271229 for the solutions for the first primes.
MATHEMATICA
QP = QPochhammer;
a[n_] := If[OddQ[n], SeriesCoefficient[QP[-x] QP[x^2] QP[-x^3] QP[x^6], {x, 0, (n-1)/2}], 0];
a /@ Range[0, 100] (* Jean-François Alcover, Sep 19 2019 *)
PROG
(PARI) q='q+O('q^220); concat([0], Vec( (eta(q^4)*eta(q^12))^4 / (eta(q^2)*eta(q^6)*eta(q^8)*eta(q^24) ) ) ) \\ Joerg Arndt, Sep 12 2016
CROSSREFS
Sequence in context: A227761 A037188 A276847 * A306798 A086079 A296338
KEYWORD
sign,easy,mult
AUTHOR
Wolfdieter Lang, Apr 19 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 19:00 EDT 2024. Contains 372720 sequences. (Running on oeis4.)