The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261029 Number of ways to write n in the form F(x,y,z) = x^3 + y^3 + z^3 - 3xyz, where 0 <= x <= y <= z and z >= x+1. 13
0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 1, 0, 1, 1, 2, 3, 1, 0, 1, 2, 0, 1, 2, 1, 1, 1, 0, 2, 1, 0, 1, 2, 1, 1, 1, 0, 2, 1, 0, 2, 1, 3, 1, 3, 0, 1, 1, 0, 1, 1, 1, 3, 2, 0, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 2, 0, 1, 2, 3, 1, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
The following is a short proof of the corresponding 1915 result of R. D. Carmichael for a weaker restriction.
If n is in A074232, then a(n) >= 1, in view of the following identities: if n == 1 (mod 3), then n = F((n-1)/3, (n-1)/3, (n+2)/3); if n == 2 (mod 3), then n = F((n-2)/3, (n+1)/3, (n+1)/3); if n == 0 (mod 9), then n = F(n/9-1, n/9, n/9+1). QED
Further, if n > 1 is the cube of a positive number or the sum of two positive cubes, except for 2 and 9, then a(n) >= 2.
The sequence is unbounded.
Proof. We use the homogeneity of F(x,y,z) of degree 3. By induction, show that a(8^k) >= k+1. It is evident for k=0. Suppose that it is true for some value of k. Take k+1 triples (x_i,y_i,z_i) such that 8^k = F(x_i, y_i, z_i), i=1,...,k+1. Then for k+1 triples of even numbers (2*x_i, 2*y_i, 2*z_i) we have 8^(k+1) = F(2*x_i, 2*y_i, 2*z_i). But there is always a triple of not all even numbers x=(n-1)/3, y=(n-1)/3, z=(n+2)/3) or x=((n-2)/3, y=(n+1)/3, z=(n+1)/3), where n= 8^(k+1), for which 8^(k+1) = F(x,y,z). So a(8^(k+1)) >= k+2. QED
Theorem. For every n there exists k such that a(k)=n. For a proof, see [Shevelev] link.
Smallest such k are presented in sequence A260935.
LINKS
Peter J. C. Moses and Chai Wah Wu, Table of n, a(n) for n = 0..10000 (terms for n = 0..999 from Peter J. C. Moses)
R. D. Carmichael, On the representation of numbers in the form x^3+y^3+z^3-3xyz, Bull. Amer. Math. Soc. 22 (1915), 111-117.
Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^3-3xyz, arXiv:1508.05748 [math.NT], 2015.
FORMULA
For positive n, a(n)=0, if and only if n == 3 or 6 (mod 9); if p is prime, other than 3, then a(p) = a(2*p) = 1.
For n >= 1, a(8^(n-1)) = n.
MATHEMATICA
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers];
a[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]];
Array[a, 100, 0] (* Jean-François Alcover, Nov 06 2018 *)
CROSSREFS
Sequence in context: A340219 A260413 A053252 * A117195 A156606 A324606
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 22 2015
EXTENSIONS
More terms from Peter J. C. Moses, Aug 22 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 18:37 EDT 2024. Contains 372664 sequences. (Running on oeis4.)